<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
      實用文檔>數學證明題六大內容參考

      數學證明題六大內容參考

      時間:2024-09-23 00:15:57

      數學證明題六大內容參考

      數學證明題六大內容參考

      數學證明題六大內容參考

        一、數列極限的證明

        數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。

        二、微分中值定理的相關證明

        微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:

        1.零點定理和介質定理;

        2.微分中值定理;

        包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。

        3.微分中值定理

        積分中值定理的作用是為了去掉積分符號。

        在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。

        三、方程根的問題

        包括方程根唯一和方程根的個數的討論。

        四、不等式的證明

        五、定積分等式和不等式的證明

        主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。

        六、積分與路徑無關的五個等價條件

        這一部分是數一的考試重點,最近幾年沒設計到,所以要重點關注。

        以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。

      【數學證明題六大內容參考】相關文章:

      橙子的教案參考內容(通用11篇)04-14

      支教總結范文參考03-20

      演講教學設計參考02-26

      學習報告的格式參考04-12

      教案編寫包括哪些內容08-07

      小學二年級數學上冊知識點歸納內容06-26

      超聲報告模板參考02-15

      測試報告參考范例02-15

      小數的初步認識教案參考03-20

      《烙餅問題》教學反思參考02-22

      在线咨询
      用戶協議
      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲精品在线视频中文网 | 亚洲中文在线无线码 | 思思99热这里只有精品6 | 日韩欧美亚洲每日更新在线国产精品 | 亚洲精品福利在线视频 | 亚洲一本大道在线 |

        數學證明題六大內容參考

        數學證明題六大內容參考

        數學證明題六大內容參考

          一、數列極限的證明

          數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。

          二、微分中值定理的相關證明

          微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:

          1.零點定理和介質定理;

          2.微分中值定理;

          包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。

          3.微分中值定理

          積分中值定理的作用是為了去掉積分符號。

          在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。

          三、方程根的問題

          包括方程根唯一和方程根的個數的討論。

          四、不等式的證明

          五、定積分等式和不等式的證明

          主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。

          六、積分與路徑無關的五個等價條件

          這一部分是數一的考試重點,最近幾年沒設計到,所以要重點關注。

          以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。