<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      《三角形內(nèi)角和》教學設計

      時間:2021-03-08 19:57:35 教學設計 我要投稿

      《三角形內(nèi)角和》教學設計范文

        作為一名優(yōu)秀的教育工作者,時常需要編寫教學設計,教學設計要遵循教學過程的基本規(guī)律,選擇教學目標,以解決教什么的問題。你知道什么樣的教學設計才能切實有效地幫助到我們嗎?下面是小編幫大家整理的《三角形內(nèi)角和》教學設計范文,歡迎閱讀與收藏。

      《三角形內(nèi)角和》教學設計范文

        《三角形內(nèi)角和》教學設計1

        【教學目標】

        1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

        2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

        3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

        【教學重點】

        探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

        【教學難點】

        對不同探究方法的指導和學生對規(guī)律的靈活應用。

        【教具準備】

        課件、表格、學生準備不同類型的三角形各一個,量角器。

        【教學過程】

        一、激趣引入。

        1、猜謎語

        師:同學們喜歡猜謎語嗎?

        生:喜歡。

        師:那么,下面老師給大家出個謎語。請聽謎面:

        形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

        生:三角形

        2、介紹三角形按角的分類

        師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

        師分別出示卡片貼于黑板。

        3、激發(fā)學生探知心里

        師:大家會不會畫三角形?

        生:會

        師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

        生:試著畫

        師:畫出來沒有?

        生:沒有

        師:畫不出來了,是嗎?

        生:是

        師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)

        二、探究新知。

        1、認識三角形的內(nèi)角

        看看這三個字,說說看,什么是三角形的內(nèi)角?

        生:就是三角形里面的角。

        師:三角形有幾個內(nèi)角啊?

        生:3個。

        師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

        師:你知道什么是三角形“內(nèi)角和”嗎?

        生:三角形里面的角加起來的度數(shù)。

        2、研究特殊三角形的內(nèi)角和

        師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

        生:算一算:90°+60°+30°=180°90°+45°+45°=180°

        師:180°也是我們學習過的什么角?

        生:平角

        師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

        3、研究一般三角形的內(nèi)角和

        師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

        生:

        4、操作、驗證

        師:同學們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

        要求:

       。1)每4人為一個小組。

        (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

        (3)驗證的方法不只一種,同學們要多動動腦子。

        師:好,開始活動!

        師:巡視指導

        師:好!請一組匯報測量結(jié)果。

        生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

        師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準確。

        生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。

        師:好!非常好!

        師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

        生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

        師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)

        現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

        生:180度。

        師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度。現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

        三、解決疑問

        師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

        生:沒有

        師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

        生:兩個直角是180度,沒有第三個角了。

        師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

        生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

        師:學會了知識,我們就要懂得去運用。

        四、鞏固提高。

        1、填空。

        (1)三角形的內(nèi)角和是()度。

        (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

        2、求下面各角的度數(shù)。

       。1)∠1=27°∠2=53°∠3=()這是一個()三角形。

        (2)∠1=70°∠2=50°∠3=()這是一個()三角形。

        3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

        (1)80°95°5°()

        (2)60°70°90°()

       。3)30°40°50°()

        4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)

        對學生進行思品教育。

        5、思考延伸。

        根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

        《三角形內(nèi)角和》教學設計2

        教學目標:

        1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

        2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

        3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學研究方法。

        教學重點:

        1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

        2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

        教學難點:

        掌握探究方法(猜想-驗證-歸納總結(jié)),學會用“轉(zhuǎn)化”的數(shù)學思想探究三角形內(nèi)角和。

        教學用具:

        表格、課件。

        學具準備:

        各種三角形、剪刀、量角器。

        一、創(chuàng)設情境揭示課題。

        1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大!。誰說得有道理呢?今天讓我們來做一回裁判吧。

        生1:大三角形大(個子大)

        生2:小三角形大(有鈍角)

       。ń處煵蛔雠袛啵寣W生帶著問題進入新課)

        2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

        講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

        二、自主探究,合作交流。

        (一)提出問題:

        1、你認為誰說得對?你是怎么想的?

        2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

        生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

        生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

        生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

        (二)探索與發(fā)現(xiàn)

        活動一:量一量

       。1)①了解活動要求:(屏幕顯示)

        A、在練習本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)

        B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

        C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

        (引導生回顧活動要求)

        ②小組合作。

       、蹍R報交流。

        你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

       。ㄒ龑W生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

       。2)提出猜想

        剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

        活動二:拼一拼,驗證猜想

        這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

        引導:180°,跟我們學過的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

        (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

       。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

       。3)分組匯報,討論質(zhì)疑

       。4)課件演示,驗證結(jié)果

        活動三:折一折

        師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

       。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

        討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

        提問:還有沒有其它的方法?

        3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

       。1)引導學生得出結(jié)論。

        孩子們,三角形內(nèi)角和到底等于多少度呢?”

        學生答:“180°!”

       。2)總結(jié)方法,齊讀結(jié)論

        我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)

       。3)解釋測量誤差

        為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

        那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

        (三)回顧問題:

        現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對!)

        為什么?請大家一起,自信肯定的告訴我。

        生:因為三角形內(nèi)角和等于1800180°。(齊讀)

        三、鞏固深化,加深理解。

        1、試一試:數(shù)學書28頁第3題

        ∠A=180°—90°—30°

        2、練一練:數(shù)學書29頁第一題(生獨立解決)

        ∠A=180°—75°—28°

        3、小法官:數(shù)學書29頁第二題

        四、回顧課堂,滲透數(shù)學方法。

        1、總結(jié):猜想—驗證—歸納—應用的`數(shù)學方法。

        2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

        《三角形內(nèi)角和》教學設計3

        【教學內(nèi)容】

        《人教版九年義務教育教科書數(shù)學》四年級下冊《三角形的內(nèi)角和》

        【教學目標】

        1、使學生知道三角形的內(nèi)角和是180,并能運用三角形的內(nèi)角和是180解決生活中常見的問題。

        2、讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內(nèi)角和是180。

        3、培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

        【教學重點】

        使學生知道三角形的內(nèi)角和是180,并能運用它解決生活中常見的問題。

        【教學難點】

        通過多種方法驗證三角形的內(nèi)角和是180。

        【教學準備】

        課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

        【教學過程】

        一、激趣導入,提煉學習方法

        1、課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

        2、繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

        3、選擇工具,總結(jié)方法。

        讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

        師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

        4、導入新課。

        圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

        二、動手操作,探索交流新知

        1、分組活動,探索新知

        根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

        量一量組同學發(fā)給以下幾種學具:

        折一折組同學發(fā)給上面的三角形一組。

        拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

        在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

        2、多方互動,交流新知

        師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

       。1)首先要求學生說一說你們小組是怎樣進行探究的。

       。2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學生不正確的結(jié)論,因為這是知識的形成過程。)

        (3)請學生說說通過探究活動你們組得出的結(jié)論是什么。

        師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

        引導這一組從探究的過程和結(jié)論與同學、老師交流。

        師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

        同樣引導這一組從探究的過程和結(jié)論與同學、老師交流。

        3、思想碰撞,夯實新知

        師:三個徒弟你們能說說誰的方法最好嗎?

        學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

        師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180。(板書:三角形的內(nèi)角和是180)

        四、走進生活,提升運用能力

        1、出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?

        2、給你三根木條,能做出一個有兩個直角的三角形嗎?

        五、總結(jié)

        師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

        六、拓展新知,課外延伸

        師:俗話說“活到老,學到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?/p>

        大屏幕出示:

        能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

        《三角形內(nèi)角和》教學設計4

        教學內(nèi)容:

        本節(jié)課的教學內(nèi)容是義務教育課程標準實驗教科書數(shù)學四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

        教學內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習的基礎。

        教學對象分析:作為四年級的學生已有一定的生活經(jīng)驗,在平時的生活中已經(jīng)接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學組織生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

        教學目標:

        1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學知識解決簡單的實際問題。

        2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

        3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

        教學重點:

        理解并掌握三角形的內(nèi)角和是180°。

        教學難點:

        驗證所有三角形的內(nèi)角之和都是180°。

        教具準備:

        多媒體課件、各種三角形等。

        學具準備:

        三角形、剪刀、量角器等。

        教學過程:

        一、出示課題,復習舊知

        1、認識三角形的內(nèi)角。

       。ǎ保⿵土暼切蔚母拍。

       。ǎ玻┙榻B三角形的“內(nèi)角”。

        2、理解三角形的內(nèi)角“和”。

        【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

        二、動手操作,探究新知

        1、通過預習,認識結(jié)論,提出疑問

        2、驗證三角形的內(nèi)角和

        (1)用“量一量、算一算”的方法進行驗證

       、賲R報測量結(jié)果

        ②產(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?

       、劢鉀Q疑問:因為存在測量誤差。

        (2)用“剪一剪、拼一拼”的方法進行驗證

       、僦笇Ъ舴。

       、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

       、垓炞C得出:三角形的內(nèi)角和是180°。

       。3)用“折一折”的方法進行驗證

        ①指導折法。

       、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

       、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

        3、看書質(zhì)疑

        【設計理念】此過程采用直觀教學手段。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。

        三、實踐應用,解決問題:

        1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

        2、求出三角形各個角的度數(shù)。(圖略)

        3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

        70°,它的頂角是多少度?

        4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

        5、數(shù)學游戲。

        【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

        四、總結(jié)全課、延伸知識:

        1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

        2、知識延伸:給學生介紹一種更科學的驗證方法——轉(zhuǎn)化。

        【設計理念】課堂總結(jié)不僅要關(guān)注學生學會了什么,更要關(guān)注用什么方法學,要有意識的促進學生反思。

        板書設計:三角形的內(nèi)角和是180°

        方法:①量一量拼角(略)

        ②拼一拼

       、壅垡徽

        【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學生的眼前,起了畫龍點睛的作用。

        《三角形內(nèi)角和》教學設計5

        【教材內(nèi)容】:

        北師大版四年級數(shù)學下冊。

        【教學目標】:

        1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

        2、培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。

        3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣。

        【教學重點和難點】:

        重點掌握三角形的內(nèi)角和是180°,會應用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。

        【教材分析】

        《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學生的空間觀念。

        【教學過程】

        一、創(chuàng)設情境,激發(fā)興趣。

        出示課件,提出兩個兩個疑問:

        1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

        2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?

        二、初建模型,實際驗證自己的猜想

        在第一步的基礎上學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。

        三、再建模型,徹底的得出正確的結(jié)論

        因為在上一環(huán)節(jié)學生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。

        四、應用新知,鞏固練習

        1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習)

        2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)

        3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

        4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?

        五、拓展與延伸

        通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。

      【《三角形內(nèi)角和》教學設計范文】相關(guān)文章:

      初中三角形內(nèi)角和優(yōu)秀的教學設計范文(精選5篇)12-27

      多邊形的內(nèi)角和教學設計02-09

       三角形的內(nèi)角和課件和教案05-12

      《三角形的內(nèi)角和》教學反思(通用12篇)12-25

      三角形的內(nèi)角和試講稿11-16

      《三角形的內(nèi)角和》優(yōu)秀說課稿模板12-28

      《三角形的內(nèi)角和》說課稿7篇11-05

      《獅子和鹿》教學設計和反思12-16

      《等腰三角形》教學設計02-14

      《等腰三角形》教學設計02-14

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        天天免费在线看片 | 亚洲性线免费观看视频成熟 | 日韩欧美亚洲每日更新在线国产精品 | 亚洲最大丝袜首页第一国产 | 日本中文一区免费观看 | 偷窥精品在线视频 |