y,那么yy;(對稱性)
如果x>y,y>z;那么x>z;(傳遞性)
如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則,或叫同向不等式可加性)
">
<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      高中不等式的基本性質(zhì)

      回答
      瑞文問答

      2024-05-03

      如果x>y,那么yy;(對稱性)
      如果x>y,y>z;那么x>z;(傳遞性)
      如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則,或叫同向不等式可加性)

      擴展資料

        如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原則)

        如果x>y,m>n,那么x+m>y+n;(充分不必要條件)

        如果x>y>0,m>n>0,那么xm>yn;

        如果x>y>0,xn>yn(n為正數(shù)),xn<yn(n為負數(shù));

        或者說,不等式的基本性質(zhì)的另一種表達方式有:

        ①對稱性;

        ②傳遞性;

        ③加法單調(diào)性,即同向不等式可加性;

        ④乘法單調(diào)性;

        ⑤同向正值不等式可乘性;

        ⑥正值不等式可乘方;

        ⑦正值不等式可開方;

        ⑧倒數(shù)法則。

        如果由不等式的基本性質(zhì)出發(fā),通過邏輯推理,可以論證大量的初等不等式。

        另,不等式的特殊性質(zhì)有以下三種:

        ①不等式性質(zhì)1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向不變;

        ②不等式性質(zhì)2:不等式的兩邊同時乘(或除以)同一個正數(shù),不等號的方向不變;

        ③不等式性質(zhì)3:不等式的兩邊同時乘(或除以)同一個負數(shù),不等號的方向變。

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲va韩国va欧美va久久 | 亚洲日韩欧美综合 | 亚洲欧洲精品污网站在线观看 | 亚洲中文欧美日韩在线观看 | 亚洲熟女乱综合一区二区 | 日本免费a级片 |