<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      函數(shù)知識點(diǎn)總結(jié)

      時間:2024-08-21 10:10:55 知識點(diǎn)總結(jié) 我要投稿

      函數(shù)知識點(diǎn)總結(jié)匯編(15篇)

        總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,不妨讓我們認(rèn)真地完成總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的函數(shù)知識點(diǎn)總結(jié),希望對大家有所幫助。

      函數(shù)知識點(diǎn)總結(jié)匯編(15篇)

      函數(shù)知識點(diǎn)總結(jié)1

        本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點(diǎn),函數(shù)的圖象就迎刃而解了。

        一、函數(shù)的單調(diào)性

        1、函數(shù)單調(diào)性的定義

        2、函數(shù)單調(diào)性的判斷和證明:

        (1)定義法

        (2)復(fù)合函數(shù)分析法

        (3)導(dǎo)數(shù)證明法

        (4)圖象法

        二、函數(shù)的奇偶性和周期性

        1、函數(shù)的奇偶性和周期性的定義

        2、函數(shù)的奇偶性的判定和證明方法

        3、函數(shù)的周期性的判定方法

        三、函數(shù)的圖象

        1、函數(shù)圖象的作法

        (1)描點(diǎn)法

        (2)圖象變換法

        2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

        常見考法

        本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的`單調(diào)性、最值和圖象等。

        誤區(qū)提醒

        1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

        2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

        3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

        4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。

        5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

      函數(shù)知識點(diǎn)總結(jié)2

        總體上必須清楚的:

        1)程序結(jié)構(gòu)是三種:順序結(jié)構(gòu)、選擇結(jié)構(gòu)(分支結(jié)構(gòu))、循環(huán)結(jié)構(gòu)。

        2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個main函數(shù)。

        3)計算機(jī)的數(shù)據(jù)在電腦中保存是以二進(jìn)制的形式.數(shù)據(jù)存放的位置就是他的地址.

        4)bit是位是指為0或者1。 byte是指字節(jié),一個字節(jié)=八個位.

        概念常考到的:

        1、編譯預(yù)處理不是C語言的一部分,不占運(yùn)行時間,不要加分號。C語言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。

        2、define PI 3.1415926;這個寫法是錯誤的,一定不能出現(xiàn)分號。 -

        3、每個C語言程序中main函數(shù)是有且只有一個。

        4、在函數(shù)中不可以再定義函數(shù)。

        5、算法:可以沒有輸入,但是一定要有輸出。

        6、break可用于循環(huán)結(jié)構(gòu)和switch語句。

        7、逗號運(yùn)算符的級別最低,賦值的級別倒數(shù)第二。

        第一章C語言的基礎(chǔ)知識

        第一節(jié)、對C語言的基礎(chǔ)認(rèn)識

        1、C語言編寫的程序稱為源程序,又稱為編譯單位。

        2、C語言書寫格式是自由的,每行可以寫多個語句,可以寫多行。

        3、一個C語言程序有且只有一個main函數(shù),是程序運(yùn)行的起點(diǎn)。

        第二節(jié)、熟悉vc++

        1、VC是軟件,用來運(yùn)行寫的C語言程序。

        2、每個C語言程序?qū)懲旰螅际窍染幾g,后鏈接,最后運(yùn)行。(.c—.obj—.exe)這個過程中注意.c和.obj文件時無法運(yùn)行的,只有.exe文件才可以運(yùn)行。(常考!)

        第三節(jié)、標(biāo)識符

        1、標(biāo)識符(必考內(nèi)容):

        合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯了。

        并且第一個必須為字母或則是下劃線。第一個為數(shù)字就錯了

        2、標(biāo)識符分為關(guān)鍵字、預(yù)定義標(biāo)識符、用戶標(biāo)識符。

        關(guān)鍵字:不可以作為用戶標(biāo)識符號。main define scanf printf都不是關(guān)鍵字。迷惑你的地方If是可以做為用戶標(biāo)識符。因為If中的第一個字母大寫了,所以不是關(guān)鍵字。

        預(yù)定義標(biāo)識符:背誦define scanf printf include。記住預(yù)定義標(biāo)識符可以做為用戶標(biāo)識符。

        用戶標(biāo)識符:基本上每年都考,詳細(xì)請見書上習(xí)題。

        第四節(jié):進(jìn)制的轉(zhuǎn)換

        十進(jìn)制轉(zhuǎn)換成二進(jìn)制、八進(jìn)制、十六進(jìn)制。

        二進(jìn)制、八進(jìn)制、十六進(jìn)制轉(zhuǎn)換成十進(jìn)制。

        第五節(jié):整數(shù)與實(shí)數(shù)

        1)C語言只有八、十、十六進(jìn)制,沒有二進(jìn)制。但是運(yùn)行時候,所有的進(jìn)制都要轉(zhuǎn)換成二進(jìn)制來進(jìn)行處理。(考過兩次)

        a、C語言中的八進(jìn)制規(guī)定要以0開頭。018的數(shù)值是非法的,八進(jìn)制是沒有8的,逢8進(jìn)1。

        b、C語言中的十六進(jìn)制規(guī)定要以0x開頭。

        2)小數(shù)的合法寫法:C語言小數(shù)點(diǎn)兩邊有一個是零的話,可以不用寫。

        1.0在C語言中可寫成1.

        0.1在C語言中可以寫成.1。

        3)實(shí)型數(shù)據(jù)的合法形式:

        a、2.333e-1就是合法的,且數(shù)據(jù)是2.333×10-1。

        b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請結(jié)合書上的例子。

        4)整型一般是4個字節(jié),字符型是1個字節(jié),雙精度一般是8個字節(jié):

        long int x;表示x是長整型。

        unsigned int x;表示x是無符號整型。

        第六、七節(jié):算術(shù)表達(dá)式和賦值表達(dá)式

        核心:表達(dá)式一定有數(shù)值!

        1、算術(shù)表達(dá)式:+,-,*,/,%

        考試一定要注意:“/”兩邊都是整型的話,結(jié)果就是一個整型。 3/2的結(jié)果就是1.

        “/”如果有一邊是小數(shù),那么結(jié)果就是小數(shù)。 3/2.0的結(jié)果就是0.5

        “%”符號請一定要注意是余數(shù),考試最容易算成了除號。)%符號兩邊要求是整數(shù)。不是整數(shù)就錯了。[注意!!!]

        2、賦值表達(dá)式:表達(dá)式數(shù)值是最左邊的數(shù)值,a=b=5;該表達(dá)式為5,常量不可以賦值。

        1、int x=y=10:錯啦,定義時,不可以連續(xù)賦值。

        2、int x,y;

        x=y=10;對滴,定義完成后,可以連續(xù)賦值。

        3、賦值的左邊只能是一個變量。

        4、int x=7.7;對滴,x就是7

        5、float y=7;對滴,x就是7.0

        3、復(fù)合的賦值表達(dá)式:

        int a=2;

        a*=2+3;運(yùn)行完成后,a的值是12。

        一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運(yùn)算。

        4、自加表達(dá)式:

        自加、自減表達(dá)式:假設(shè)a=5,++a(是為6),a++(為5);

        運(yùn)行的機(jī)理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個++a表達(dá)式的數(shù)值為6,而a++是先用該表達(dá)式的數(shù)值為5,然后再把a(bǔ)的數(shù)值加上1為6,

        再放到變量a中。進(jìn)行了++a和a++后在下面的`程序中再用到a的話都是變量a中的6了。

        考試口訣:++在前先加后用,++在后先用后加。

        5、逗號表達(dá)式:

        優(yōu)先級別最低。表達(dá)式的數(shù)值逗號最右邊的那個表達(dá)式的數(shù)值。

        (2,3,4)的表達(dá)式的數(shù)值就是4。

        z=(2,3,4)(整個是賦值表達(dá)式)這個時候z的值為4。(有點(diǎn)難度哦!)

        z= 2,3,4(整個是逗號表達(dá)式)這個時候z的值為2。

        補(bǔ)充:

        1、空語句不可以隨意執(zhí)行,會導(dǎo)致邏輯錯誤。

        2、注釋是最近幾年考試的重點(diǎn),注釋不是C語言,不占運(yùn)行時間,沒有分號。不可以嵌套!

        3、強(qiáng)制類型轉(zhuǎn)換:

        一定是(int)a不是int(a),注意類型上一定有括號的。

        注意(int)(a+b)和(int)a+b的區(qū)別。前是把a(bǔ)+b轉(zhuǎn)型,后是把a(bǔ)轉(zhuǎn)型再加b。

        4、三種取整丟小數(shù)的情況:

        1、int a =1.6;

        2、(int)a;

        3、1/2;3/2;

        第八節(jié)、字符

        1)字符數(shù)據(jù)的合法形式::

        ‘1’是字符占一個字節(jié),”1”是字符串占兩個字節(jié)(含有一個結(jié)束符號)。

        ‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。

        一般考試表示單個字符錯誤的形式:’65’ “1”

        字符是可以進(jìn)行算術(shù)運(yùn)算的,記住:‘0’-0=48

        大寫字母和小寫字母轉(zhuǎn)換的方法:‘A’+32=’a’相互之間一般是相差32。

        2)轉(zhuǎn)義字符:

        轉(zhuǎn)義字符分為一般轉(zhuǎn)義字符、八進(jìn)制轉(zhuǎn)義字符、十六進(jìn)制轉(zhuǎn)義字符。

        一般轉(zhuǎn)義字符:背誦/0、、 ’、 ”、 。

        八進(jìn)制轉(zhuǎn)義字符:‘141’是合法的,前導(dǎo)的0是不能寫的。

        十六進(jìn)制轉(zhuǎn)義字符:’x6d’才是合法的,前導(dǎo)的0不能寫,并且x是小寫。

        3、字符型和整數(shù)是近親:兩個具有很大的相似之處

        char a = 65 ;

        printf(“%c”, a);得到的輸出結(jié)果:a

        printf(“%d”, a);得到的輸出結(jié)果:65

        第九節(jié)、位運(yùn)算

        1)位運(yùn)算的考查:會有一到二題考試題目。

        總的處理方法:幾乎所有的位運(yùn)算的題目都要按這個流程來處理(先把十進(jìn)制變成二進(jìn)制再變成十進(jìn)制)。

        例1:char a = 6, b;

        b = a<<2;這種題目的計算是先要把a(bǔ)的十進(jìn)制6化成二進(jìn)制,再做位運(yùn)算。

        例2:一定要記住,異或的位運(yùn)算符號” ^ ”。0異或1得到1。

        0異或0得到0。兩個女的生不出來。

        考試記憶方法:一男(1)一女(0)才可以生個小孩(1)。

        例3:在沒有舍去數(shù)據(jù)的時候,<<左移一位表示乘以2;>>右移一位表示除以2。

      函數(shù)知識點(diǎn)總結(jié)3

        一次函數(shù)

        一、定義與定義式:

        自變量x和因變量y有如下關(guān)系:

        y=kx+b

        則此時稱y是x的一次函數(shù)。

        特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

        即:y=kx (k為常數(shù),k0)

        二、一次函數(shù)的性質(zhì):

        1、y的變化值與對應(yīng)的x的變化值成正比例,比值為k

        即:y=kx+b (k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

        2、當(dāng)x=0時,b為函數(shù)在y軸上的截距。

        三、一次函數(shù)的圖像及性質(zhì):

        1、作法與圖形:通過如下3個步驟

        (1)列表;

        (2)描點(diǎn);

        (3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

        2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

        3、k,b與函數(shù)圖像所在象限:

        當(dāng)k0時,直線必通過一、三象限,y隨x的增大而增大;

        當(dāng)k0時,直線必通過二、四象限,y隨x的增大而減小。

        當(dāng)b0時,直線必通過一、二象限;

        當(dāng)b=0時,直線通過原點(diǎn)

        當(dāng)b0時,直線必通過三、四象限。

        特別地,當(dāng)b=O時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時,當(dāng)k0時,直線只通過一、三象限;當(dāng)k0時,直線只通過二、四象限。

        四、確定一次函數(shù)的表達(dá)式:

        已知點(diǎn)A(x1,y1);B(x2,y2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

        (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

        (2)因為在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

        (3)解這個二元一次方程,得到k,b的值。

        (4)最后得到一次函數(shù)的表達(dá)式。

        五、一次函數(shù)在生活中的應(yīng)用:

        1、當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

        2、當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

        六、常用公式:(不全,希望有人補(bǔ)充)

        1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

        2、求與x軸平行線段的中點(diǎn):|x1—x2|/2

        3、求與y軸平行線段的中點(diǎn):|y1—y2|/2

        4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

        二次函數(shù)

        I、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:

        y=ax^2+bx+c

        (a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項式。

        II、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

        頂點(diǎn)式:y=a(x—h)^2+k [拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

        III、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

        可以看出,二次函數(shù)的圖像是一條拋物線。

        IV、拋物線的性質(zhì)

        1、拋物線是軸對稱圖形。對稱軸為直線

        x= —b/2a。

        對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2、拋物線有一個頂點(diǎn)P,坐標(biāo)為

        P( —b/2a,(4ac—b^2)/4a )

        當(dāng)—b/2a=0時,P在y軸上;當(dāng)= b^2—4ac=0時,P在x軸上。

        3、二次項系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a0時,拋物線向上開口;當(dāng)a0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

        當(dāng)a與b同號時(即ab0),對稱軸在y軸左;

        當(dāng)a與b異號時(即ab0),對稱軸在y軸右。

        5、常數(shù)項c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點(diǎn)個數(shù)

        = b^2—4ac0時,拋物線與x軸有2個交點(diǎn)。

        = b^2—4ac=0時,拋物線與x軸有1個交點(diǎn)。

        = b^2—4ac0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

        V、二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

        當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

        即ax^2+bx+c=0

        此時,函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

        函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的`根。

        1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對稱軸如下表:

        解析式頂點(diǎn)坐標(biāo)對稱軸

        y=ax^2(0,0) x=0

        y=a(x—h)^2(h,0) x=h

        y=a(x—h)^2+k(h,k) x=h

        y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

        當(dāng)h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

        當(dāng)h0時,則向左平行移動|h|個單位得到、

        當(dāng)h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

        2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時,開口向上,當(dāng)a0時開口向下,對稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、

        3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時,y隨x的增大而減小;當(dāng)x —b/2a時,y隨x的增大而增大、若a0,當(dāng)x —b/2a時,y隨x的增大而增大;當(dāng)x —b/2a時,y隨x的增大而減小、

        4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

        (a0)的兩根、這兩點(diǎn)間的距離AB=|x—x|

        當(dāng)△=0、圖象與x軸只有一個交點(diǎn);

        當(dāng)△0、圖象與x軸沒有交點(diǎn)、當(dāng)a0時,圖象落在x軸的上方,x為任何實(shí)數(shù)時,都有y0;當(dāng)a0時,圖象落在x軸的下方,x為任何實(shí)數(shù)時,都有y0、

        5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時,y最小(大)值=(4ac—b^2)/4a、

        頂點(diǎn)的橫坐標(biāo),是取得最值時的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值、

        6、用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點(diǎn)或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a0)、

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、

        (3)當(dāng)題給條件為已知圖象與x軸的兩個交點(diǎn)坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、

        7、二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)、

        反比例函數(shù)

        形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

        當(dāng)K0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當(dāng)K0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

        知識點(diǎn):

        1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。

        2、對于雙曲線y=k/x,若在分母上加減任意一個實(shí)數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      函數(shù)知識點(diǎn)總結(jié)4

        f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

        ⑴函數(shù)區(qū)間單調(diào)性的判斷思路

        ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1

        ⅱ做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。

        ⅲ判斷變形后的表達(dá)式f(x1)-f(x2)的符號,指出單調(diào)性。

        ⑵復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

        ⑶注意事項

        函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

        2、函數(shù)的整體性質(zhì)——奇偶性

        對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

        對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

        小編推薦:高中數(shù)學(xué)必考知識點(diǎn)歸納總結(jié)

        ⑴奇函數(shù)和偶函數(shù)的性質(zhì)

        ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點(diǎn)對稱。

        ⅱ奇函數(shù)的圖像關(guān)于原點(diǎn)對稱,偶函數(shù)的圖像關(guān)于y軸對稱。

        ⑵函數(shù)奇偶性判斷思路

        ⅰ先確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不關(guān)于原點(diǎn)對稱,則為非奇非偶函數(shù)。

        ⅱ確定f(x)和f(-x)的關(guān)系:

        若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

        若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

        3、函數(shù)的'最值問題

        ⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

        ⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

        ⑶關(guān)于二次函數(shù)在閉區(qū)間的最值問題

        ⅰ判斷二次函數(shù)的頂點(diǎn)是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

        ⅱ若二次函數(shù)的頂點(diǎn)在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點(diǎn)為最小值,a0時的最大值或a

        ⅲ若二次函數(shù)的頂點(diǎn)不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

        若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

        若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

        3高一數(shù)學(xué)基本初等函數(shù)1、指數(shù)函數(shù):函數(shù)y=ax (a>0且a≠1)叫做指數(shù)函數(shù)

        a的取值a>1 0

        注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:

        a>1時,最小值f(a),最大值f(b);0

        ⑵對于任意指數(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。

        2、對數(shù)函數(shù):函數(shù)y=logax(a>0且a≠1)),叫做對數(shù)函數(shù)

        a的取值a>1 0

        3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。

        ⑴所有冪函數(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過定點(diǎn)(1,1)。

        ⑵a>0時,冪函數(shù)圖像過原點(diǎn),且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。

        ⑶a

        當(dāng)x從右側(cè)無限接近原點(diǎn)時,圖像無限接近y軸正半軸;

        當(dāng)y無限接近正無窮時,圖像無限接近x軸正半軸。

        冪函數(shù)總圖見下頁。

        4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。

        反函數(shù)圖像與原函數(shù)圖像關(guān)于直線y=x對稱。

      函數(shù)知識點(diǎn)總結(jié)5

        倍角公式

        二倍角公式

        正弦形式:sin2α=2sinαcosα

        正切形式:tan2α=2tanα/(1-tan^2(α))

        余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

        三倍角公式

        sin3α=4sinα·sin(π/3+α)sin(π/3-α)

        cos3α=4cosα·cos(π/3+α)cos(π/3-α)

        tan3a=tana·tan(π/3+a)·tan(π/3-a)

        四倍角公式

        sin4A=-4*(cosA*sinA*(2*sinA^2-1))

        cos4A=1+(-8*cosA^2+8*cosA^4)

        tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

        半角公式

        正弦

        sin(A/2)=√((1-cosA)/2)

        sin(A/2)=-√((1-cosA)/2)

        余弦

        cos(A/2)=√((1+cosA)/2)

        cos(A/2)=-√((1+cosA)/2)

        正切

        tan(A/2)=√((1-cosA)/((1+cosA))

        tan(A/2)=-√((1-cosA)/((1+cosA))

        積化和差

        sina*cosb=[sin(a+b)+sin(a-b)]/2

        cosa*sinb=[sin(a+b)-sin(a-b)]/2

        cosa*cosb=[cos(a+b)+cos(a-b)]/2

        sina*sinb=[cos(a-b)-cos(a+b)]/2

        和差化積

        sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

        sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

        cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

        cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

        誘導(dǎo)公式

        任意角α與-α的三角函數(shù)值之間的關(guān)系:

        sin(-α)=-sinα

        cos(-α)=cosα

        tan(-α)=-tanα

        cot(-α)=-cotα

        設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

        sin(π+α)=-sinα

        cos(π+α)=-cosα

        tan(π+α)=tanα

        cot(π+α)=cotα

        利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

        sin(π-α)=sinα

        cos(π-α)=-cosα

        tan(π-α)=-tanα

        cot(π-α)=-cotα

        設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

        sin(2kπ+α)=sinα(k∈Z)

        cos(2kπ+α)=cosα(k∈Z)

        tan(2kπ+α)=tanα(k∈Z)

        cot(2kπ+α)=cotα(k∈Z)

        利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

        sin(2π-α)=-sinα

        cos(2π-α)=cosα

        tan(2π-α)=-tanα

        cot(2π-α)=-cotα

        π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

        sin(π/2+α)=cosα

        cos(π/2+α)=-sinα

        tan(π/2+α)=-cotα

        cot(π/2+α)=-tanα

        sin(π/2-α)=cosα

        cos(π/2-α)=sinα

        tan(π/2-α)=cotα

        cot(π/2-α)=tanα

        sin(3π/2+α)=-cosα

        cos(3π/2+α)=sinα

        tan(3π/2+α)=-cotα

        cot(3π/2+α)=-tanα

        sin(3π/2-α)=-cosα

        cos(3π/2-α)=-sinα

        tan(3π/2-α)=cotα

        cot(3π/2-α)=tanα

        (以上k∈Z)

        拓展閱讀:三角函數(shù)常用知識點(diǎn)

        1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

        2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

        3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的.余角的正弦值。

        4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

        5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

        6、正切、余切的增減性:當(dāng)0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

      函數(shù)知識點(diǎn)總結(jié)6

        一:函數(shù)及其表示

        知識點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

        1. 函數(shù)與映射的區(qū)別:

        2. 求函數(shù)定義域

        常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

        ①當(dāng)f(x)為整式時,函數(shù)的定義域為R.

        ②當(dāng)f(x)為分式時,函數(shù)的定義域為使分式分母不為零的實(shí)數(shù)集合。

        ③當(dāng)f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實(shí)數(shù)集合。

        ④當(dāng)f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

        ⑤如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

        ⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

        ⑦對于由實(shí)際問題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問題的制約。

        3. 求函數(shù)值域

        (1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

        (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

        (3)、判別式法:

        (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

        (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

        (6)、利用函數(shù)的`單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;

        (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

        (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

        (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

      函數(shù)知識點(diǎn)總結(jié)7

        教學(xué)目標(biāo):

        (1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

        (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

        教學(xué)重點(diǎn):能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的'取值范圍。

        教學(xué)難點(diǎn):求出函數(shù)的自變量的取值范圍。

        教學(xué)過程:

        一、問題引新

        1.設(shè)矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,

        AB長_(m) 1 2 3 4 5 6 7 8 9

        BC長(m) 12

        面積y(m2) 48

        2._的值是否可以任意取?有限定范圍嗎?

        3.我們發(fā)現(xiàn),當(dāng)AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個函數(shù)的關(guān)系式,教師可提出問題,(1)當(dāng)AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)

        二、提出問題,解決問題

        1、引導(dǎo)學(xué)生看書第二頁問題一、二

        2、觀察概括

        y=6_2 d= n /2 (n-3) y= 20 (1-_)2

        以上函數(shù)關(guān)系式有什么共同特點(diǎn)? (都是含有二次項)

        3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

        4、課堂練習(xí)

        (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

        (1)y=5_+1 (2)y=4_2-1

        (3)y=2_3-3_2 (4)y=5_4-3_+1

        (2).P3練習(xí)第1,2題。

        五、小結(jié)敘述二次函數(shù)的定義.

        第二課時:26.1二次函數(shù)(2)

        教學(xué)目標(biāo):

        1、使學(xué)生會用描點(diǎn)法畫出y=a_2的圖象,理解拋物線的有關(guān)概念。

        2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣。

        教學(xué)重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象

        教學(xué)難點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

      函數(shù)知識點(diǎn)總結(jié)8

        余割函數(shù)

        對于任意一個實(shí)數(shù)x,都對應(yīng)著唯一的角(弧度制中等于這個實(shí)數(shù)),而這個角又對應(yīng)著唯一確定的余割值cscx與它對應(yīng),按照這個對應(yīng)法則建立的.函數(shù)稱為余割函數(shù)。

        記作f(x)=cscx

        f(x)=cscx=1/sinx

        1、定義域:{x|x≠kπ,k∈Z}

        2、值域:{y|y≤-1或y≥1}

        3、奇偶性:奇函數(shù)

        4、周期性:最小正周期為2π

        5、圖像:

        圖像漸近線為:x=kπ ,k∈Z

        其實(shí)有一點(diǎn)需要注意,就是余割函數(shù)與正弦函數(shù)互為倒數(shù)。

      函數(shù)知識點(diǎn)總結(jié)9

        一、二次函數(shù)概念:

        a0)b,c是常數(shù)

        1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù)a0,而b,數(shù).

        2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

        ⑴等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.

        ⑵a,二、二次函數(shù)的基本形式

        1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對值越大,拋物線的開口越小。

        a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上00,00,性質(zhì)x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減小;x0時,y有最小值0.x0時,y隨x的增大而減小;x0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值0.

        2.yax2c的性質(zhì):上加下減。

        a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上c0,c0,性質(zhì)x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減小;x0時,y有最小值c.x0時,y隨x的增大而減小;x0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值c.

        3.yaxh的性質(zhì):左加右減。

        2a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上0h,0h,性質(zhì)xh時,y隨x的增大而增大;xh時,y隨X=hx的增大而減小;xh時,y有最小值0.xh時,y隨x的增大而減小;xh時,y隨a02向下X=hx的增大而增大;xh時,y有最大值0.

        4.yaxhk的性質(zhì):

        a的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)a0向上h,kh,kX=hxh時,y隨x的增大而增大;xh時,y隨x的增大而減小;xh時,y有最小值k.xh時,y隨x的增大而減小;xh時,y隨a0向下X=hx的增大而增大;xh時,y有最大值k.

        三、二次函數(shù)圖象的平移

        1.平移步驟:

        方法一:

        ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

        ⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

        向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

        畫草圖時應(yīng)抓住以下幾點(diǎn):開口方向,對稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

        六、二次函數(shù)yax2bxc的性質(zhì)

        b4acb2b1.當(dāng)a0時,拋物線開口向上,對稱軸為x,頂點(diǎn)坐標(biāo)為,.

        2a4a2a當(dāng)xbbb時,y隨x的增大而減小;當(dāng)x時,y隨x的增大而增大;當(dāng)x時,y有最小2a2a2a4acb2值.

        4ab4acb2bb2.當(dāng)a0時,拋物線開口向下,對稱軸為x,頂點(diǎn)坐標(biāo)為,時,y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時,y隨x的增大而減小;當(dāng)x時,y有最大值

        2a2a4a

        七、二次函數(shù)解析式的表示方法

        1.一般式:yax2bxc(a,b,c為常數(shù),a0);

        2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

        3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

        注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時,拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

        八、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系

        1.二次項系數(shù)a

        二次函數(shù)yax2bxc中,a作為二次項系數(shù),顯然a0.

        ⑴當(dāng)a0時,拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

        ⑵當(dāng)a0時,拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

        總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大小.

        2.一次項系數(shù)b

        在二次項系數(shù)a確定的前提下,b決定了拋物線的對稱軸.

        ⑴在a0的前提下,當(dāng)b0時,當(dāng)b0時,當(dāng)b0時,b0,即拋物線的對稱軸在y軸左側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時,當(dāng)b0時,當(dāng)b0時,b0,即拋物線的對稱軸在y軸右側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的左側(cè).2a

        總結(jié)起來,在a確定的前提下,b決定了拋物線對稱軸的位置.

        ab的符號的判定:對稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

        3.常數(shù)項c

        ⑴當(dāng)c0時,拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

        ⑵當(dāng)c0時,拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

        ⑶當(dāng)c0時,拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.

        b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

        根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便.一般來說,有如下幾種情況:

        1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

        2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

        3.已知拋物線與x軸的兩個交點(diǎn)的橫坐標(biāo),一般選用兩根式;

        4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

        九、二次函數(shù)圖象的對稱

        二次函數(shù)圖象的'對稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

        1.關(guān)于x軸對稱

        yax2bxc關(guān)于x軸對稱后,得到的解析式是yax2bxc;

        yaxhk關(guān)于x軸對稱后,得到的解析式是yaxhk;

        2.關(guān)于y軸對稱

        yax2bxc關(guān)于y軸對稱后,得到的解析式是yax2bxc;

        22yaxhk關(guān)于y軸對稱后,得到的解析式是yaxhk;

        3.關(guān)于原點(diǎn)對稱

        yax2bxc關(guān)于原點(diǎn)對稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對稱后,得到的解析式是yaxhk;

        4.關(guān)于頂點(diǎn)對稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

        2222b2yaxbxc關(guān)于頂點(diǎn)對稱后,得到的解析式是yaxbxc;

        2a22yaxhk關(guān)于頂點(diǎn)對稱后,得到的解析式是yaxhk.n對稱

        5.關(guān)于點(diǎn)m,n對稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.

        十、二次函數(shù)與一元二次方程:

        1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

        一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時的特殊情況.圖象與x軸的交點(diǎn)個數(shù):

        ①當(dāng)b24ac0時,圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

        b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

        a2

        ②當(dāng)0時,圖象與x軸只有一個交點(diǎn);

        ③當(dāng)0時,圖象與x軸沒有交點(diǎn).

        1"當(dāng)a0時,圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;

        2"當(dāng)a0時,圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.

        2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        3.二次函數(shù)常用解題方法總結(jié):

        ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

        ⑵求二次函數(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

        ⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號,或由二次函數(shù)中a,b,c的符號判斷圖象的位置,要數(shù)形結(jié)合;

        ⑷二次函數(shù)的圖象關(guān)于對稱軸對稱,可利用這一性質(zhì),求和已知一點(diǎn)對稱的點(diǎn)坐標(biāo),或已知與x軸的一個交點(diǎn)坐標(biāo),可由對稱性求出另一個交點(diǎn)坐標(biāo).

        ⑸與二次函數(shù)有關(guān)的還有二次三項式,二次三項式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時為例,揭示二次函數(shù)、二次三項式和一元二次方程之間的內(nèi)在聯(lián)系:

        0拋物線與x軸有兩個交點(diǎn)0二次三項式的值可正、可零、可負(fù)二次三項式的值為非負(fù)二次三項式的值恒為正一元二次方程有兩個不相等實(shí)根一元二次方程有兩個相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

        y=3x2y=3(x-2)2y=x22

        y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

        剎車距離二次函數(shù)應(yīng)用何時獲得最大利潤

        最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

      函數(shù)知識點(diǎn)總結(jié)10

        一次函數(shù)知識點(diǎn)總結(jié)基本概念

        1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。

        例題:在勻速運(yùn)動公式svt中,v表示速度,t表示時間,s表示在時間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.

        2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

        *判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應(yīng)

        1-12

        例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()

        x(A)4個(B)3個(C)2個(D)1個

        3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的取值范圍)一次函數(shù)

        1..自變量x和因變量y有如下關(guān)系:

        y=kx+b(k為任意不為零實(shí)數(shù),b為任意實(shí)數(shù))則此時稱y是x的一次函數(shù)。特別的,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實(shí)數(shù))

        定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實(shí)際有意義。

        2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

        一次函數(shù)性質(zhì):

        1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

        2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關(guān)系。

        特別地,當(dāng)b=0時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。4、特殊位置關(guān)系

        當(dāng)平面直角坐標(biāo)系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等

        當(dāng)平面直角坐標(biāo)系中兩直線垂直時,其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個K值的乘積為-1)

        應(yīng)用

        一次函數(shù)y=kx+b的性質(zhì)是:(1)當(dāng)k>0時,y隨x的增大而增大;(2)當(dāng)kx2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時,y隨x的增大而增大”,得x1>x2。故選A。

        判斷函數(shù)圖象的位置

        例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限

        C.第三象限D(zhuǎn).第四象限

        解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

        解析式:y=kx(k是常數(shù),k≠0)必過點(diǎn):(0,0)、(1,k)

        走向:k>0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當(dāng)b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當(dāng)b

        若直線yxa和直線yxb的'交點(diǎn)坐標(biāo)為(m,8),則ab____________.已知函數(shù)y=3x+1,當(dāng)自變量增加m時,相應(yīng)的函數(shù)值增加()A.3m+1B.3mC.mD.3m-1

        11、一次函數(shù)y=kx+b的圖象的畫法.

        根據(jù)幾何知識:經(jīng)過兩點(diǎn)能畫出一條直線,并且只能畫出一條直線,即兩點(diǎn)確定一條直線,所以畫一次函數(shù)的圖

        象時,只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),坐標(biāo)或縱坐標(biāo)為0的點(diǎn).

        b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時,向上平移;當(dāng)b

        某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.

      函數(shù)知識點(diǎn)總結(jié)11

        (一)、映射、函數(shù)、反函數(shù)

        1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射。

        2、對于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

        (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù)。

        (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式。

        (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。

        3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

        (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

        (2)由y=f(x)的解析式求出x=f—1(y);

        (3)將x,y對換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。

        注意:

        ①對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。

        ②熟悉的應(yīng)用,求f—1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運(yùn)算。

        (二)、函數(shù)的解析式與定義域

        1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:

        (1)有時一個函數(shù)來自于一個實(shí)際問題,這時自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

        (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:

        ①分式的分母不得為零;

        ②偶次方根的被開方數(shù)不小于零;

        ③對數(shù)函數(shù)的真數(shù)必須大于零;

        ④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

        ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。

        應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。

        (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可。

        已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

        2、求函數(shù)的解析式一般有四種情況

        (1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式。

        (2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。

        (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時,可用換元法求函數(shù)f(x)的表達(dá)式,這時必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。

        (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。

        (三)、函數(shù)的值域與最值

        1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

        (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。

        (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元。

        (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。

        (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。

        (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧。

        (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

        (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。

        (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。

        2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

        求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。

        如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2。可見定義域?qū)瘮?shù)的值域或最值的影響。

        3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

        函數(shù)的.最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問題上,求解時要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值。

        (四)、函數(shù)的奇偶性

        1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。

        正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。

        2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:

        注意如下結(jié)論的運(yùn)用:

        (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

        (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

        (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

        (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

        3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論

        (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱。

        (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù)。

        (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立。

        (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對稱區(qū)間上的單調(diào)性是相同(反)的。

        (5)若f(x)的定義域關(guān)于原點(diǎn)對稱,則F(x)=f(x)+f(—x)是偶函數(shù),G(x)=f(x)—f(—x)是奇函數(shù)。

        (6)奇偶性的推廣

        函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù)。函數(shù)y=f(x)對定義域內(nèi)的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。

        (五)、函數(shù)的單調(diào)性

        1、單調(diào)函數(shù)

        對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

        對于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

        (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念。一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

        (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替。

        (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi)。

        (4)注意定義的兩種等價形式:

        設(shè)x1、x2∈[a,b],那么:

        ①在[a、b]上是增函數(shù);

        在[a、b]上是減函數(shù)。

        ②在[a、b]上是增函數(shù)。

        在[a、b]上是減函數(shù)。

        需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。

        (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”。

        5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

        若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減。簡稱“同增、異減”。

        在研究函數(shù)的單調(diào)性時,常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程。

        6、證明函數(shù)的單調(diào)性的方法

        (1)依定義進(jìn)行證明。其步驟為:

        ①任取x1、x2∈M且x1(或<)f(x2);

        ②根據(jù)定義,得出結(jié)論。

        (2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo)。

        如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù)。

        (六)、函數(shù)的圖象

        函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識。

        求作圖象的函數(shù)表達(dá)式

        與f(x)的關(guān)系

        由f(x)的圖象需經(jīng)過的變換

        y=f(x)±b(b>0)

        沿y軸向平移b個單位

        y=f(x±a)(a>0)

        沿x軸向平移a個單位

        y=—f(x)

        作關(guān)于x軸的對稱圖形

        y=f(|x|)

        右不動、左右關(guān)于y軸對稱

        y=|f(x)|

        上不動、下沿x軸翻折

        y=f—1(x)

        作關(guān)于直線y=x的對稱圖形

        y=f(ax)(a>0)

        橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變

        y=af(x)

        縱坐標(biāo)伸長到原來的|a|倍,橫坐標(biāo)不變

        y=f(—x)

        作關(guān)于y軸對稱的圖形

        【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

        ①求證:f(0)=1;

        ②求證:y=f(x)是偶函數(shù);

        ③若存在常數(shù)c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由。

        思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法。

        解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

        ②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數(shù)。

        ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

        所以,所以f(x+c)=—f(x)。

        兩邊應(yīng)用中的結(jié)論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個周期。

      函數(shù)知識點(diǎn)總結(jié)12

        1.常量和變量

        在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

        2.函數(shù)

        設(shè)在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).

        3.自變量的取值范圍

        (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

        (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

        (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

        4.函數(shù)值

        對于自變量在取值范圍內(nèi)的一個確定的值,如當(dāng)x=a時,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值,叫做x=a時的函數(shù)值.

        5.函數(shù)的表示法

        (1)解析法;(2)列表法;(3)圖象法.

        6.函數(shù)的圖象

        把自變量x的一個值和函數(shù)y的對應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個點(diǎn),所有這些點(diǎn)的集合,叫做這個函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

        (1)寫出函數(shù)解析式及自變量的取值范圍;

        (2)列表:列表給出自變量與函數(shù)的一些對應(yīng)值;

        (3)描點(diǎn):以表中對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

        (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來.

        7.一次函數(shù)

        (1)一次函數(shù)

        如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

        特別地,當(dāng)b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).

        (2)一次函數(shù)的圖象

        一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點(diǎn)的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.

        (3)一次函數(shù)的性質(zhì)

        當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

        (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

        ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時,求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

        ②二元一次方程組對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

        ③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的.形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時,求自變量相應(yīng)的取值范圍.

        8.反比例函數(shù)(1)反比例函數(shù)

        (1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

        (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

        (3)反比例函數(shù)的性質(zhì)

        ①當(dāng)k>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

        ②當(dāng)k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

        ③反比例函數(shù)圖象關(guān)于直線y=±x對稱,關(guān)于原點(diǎn)對稱.

        (4)k的兩種求法

        ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

        若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

        (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問題

        若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時,兩函數(shù)圖象無交點(diǎn);

        當(dāng)k1k2>0時,兩函數(shù)圖象有兩個交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對稱.

        1.二次函數(shù)

        如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

        幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

        2.二次函數(shù)的圖象

        二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

        3.二次函數(shù)的性質(zhì)

        二次函數(shù)y=ax2+bx+c的性質(zhì)對應(yīng)在它的圖象上,有如下性質(zhì):

        (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對稱軸是直線,頂點(diǎn)必在對稱軸上;

        (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時,y隨x的增大而減小;當(dāng)x>時,y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時,y隨x的增大而減小;當(dāng)x=時,y有最大值;

        (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

        (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

        <0時,拋物線y=ax2+bx+c與x軸沒有公共點(diǎn).=0時,拋物線y=ax2+bx+c與x軸只有一個公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

        拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

      函數(shù)知識點(diǎn)總結(jié)13

        反比例函數(shù)的表達(dá)式

        X是自變量,Y是X的函數(shù)

        y=k/x=k·1/x

        xy=k

        y=k·x^(-1)(即:y等于x的負(fù)一次方,此處X必須為一次方)

        y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時比例系數(shù)為:k/n

        函數(shù)式中自變量取值的范圍

        ①k≠0;②在一般的情況下,自變量x的取值范圍可以是不等于0的任意實(shí)數(shù);③函數(shù)y的取值范圍也是任意非零實(shí)數(shù)。  解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的'一切實(shí)數(shù)

        y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k為常數(shù)(k≠0),x不等于0)

        反比例函數(shù)圖象

        反比例函數(shù)的圖像屬于以原點(diǎn)為對稱中心的中心對稱的雙曲線,反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標(biāo)軸相交(K≠0)。

        反比例函數(shù)中k的幾何意義是什么?有哪些應(yīng)用

        過反比例函數(shù)y=k/x(k≠0),圖像上一點(diǎn)P(x,y),作兩坐標(biāo)軸的垂線,兩垂足、原點(diǎn)、P點(diǎn)組成一個矩形,矩形的面積S=x的絕對值*y的絕對值=(x*y)的絕對值=|k|

        研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點(diǎn)P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。

        所以,對雙曲線上任意一點(diǎn)作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對值。在解有關(guān)反比例函數(shù)的問題時,若能靈活運(yùn)用反比例函數(shù)中k的幾何意義,會給解題帶來很多方便。

      函數(shù)知識點(diǎn)總結(jié)14

        二次函數(shù)概念

        一般地,把形如y=ax2+bx+c(其中a、b、c是常數(shù),a≠0,b,c可以為0)的函數(shù)叫做二次函數(shù),其中a稱為二次項系數(shù),b為一次項系數(shù),c為常數(shù)項。x為自變量,y為因變量。等號右邊自變量的最高次數(shù)是2。二次函數(shù)圖像是軸對稱圖形。

        注意:“變量”不同于“自變量”,不能說“二次函數(shù)是指變量的最高次數(shù)為二次的多項式函數(shù)”。“未知數(shù)”只是一個數(shù)(具體值未知,但是只取一個值),“變量”可在實(shí)數(shù)范圍內(nèi)任意取值。在方程中適用“未知數(shù)”的概念(函數(shù)方程、微分方程中是未知函數(shù),但不論是未知數(shù)還是未知函數(shù),一般都表示一個數(shù)或函數(shù)——也會遇到特殊情況),但是函數(shù)中的字母表示的是變量,意義已經(jīng)有所不同。從函數(shù)的'定義也可看出二者的差別,如同函數(shù)不等于函數(shù)的關(guān)系。

        二次函數(shù)公式大全

        二次函數(shù)

        I.定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:

        y=ax2+bx+c(a,b,c為常數(shù),a≠0)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=ax2;+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x-h)2;+k [拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

        III.二次函數(shù)的圖象

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x??的圖象,

        可以看出,二次函數(shù)的圖象是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對稱圖形。對稱軸為直線

        x = -b/2a。

        對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

        P [ -b/2a ,(4ac-b2;)/4a ]。

        當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b2-4ac=0時,P在x軸上。

        3.二次項系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

        當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

        當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

        5.常數(shù)項c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6.拋物線與x軸交點(diǎn)個數(shù)

        Δ= b2-4ac>0時,拋物線與x軸有2個交點(diǎn)。

        Δ= b2-4ac=0時,拋物線與x軸有1個交點(diǎn)。

        Δ= b2-4ac<0時,拋物線與x軸沒有交點(diǎn)。

        V.二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱函數(shù))y=ax2;+bx+c,

        當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

        即ax2;+bx+c=0

        此時,函數(shù)圖象與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

        函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      函數(shù)知識點(diǎn)總結(jié)15

        高一數(shù)學(xué)第三章函數(shù)的應(yīng)用知識點(diǎn)總結(jié)

        一、方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

        yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

        即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

        2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

        聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

        零點(diǎn)存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數(shù)單調(diào)性,然后證明是否有f(a)f(b)第三章函數(shù)的應(yīng)用習(xí)題

        一、選擇題

        1.下列函數(shù)有2個零點(diǎn)的是()

        222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內(nèi)的根的過程中得:f(1)0,f(1.5)0,

        f(1.25)0,則方程的根落在區(qū)間()

        A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

        3.若方程axxa0有兩個解,則實(shí)數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

        4.函數(shù)f(x)=lnx-2x的零點(diǎn)所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

        5.已知方程x3x10僅有一個正零點(diǎn),則此零點(diǎn)所在的區(qū)間是()

        A.(3,4)B.(2,3)C.(1,2)D.(0,1)

        6.函數(shù)f(x)lnx2x6的零點(diǎn)落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

        7.已知函數(shù)

        fx的圖象是不間斷的,并有如下的對應(yīng)值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點(diǎn)至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

        9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

        10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實(shí)數(shù)解的是()

        )

        ()

        ()

        ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()

        xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

        x12x根的個數(shù)為()

        A、0B、1C、2D、3二、填空題

        13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點(diǎn)的函數(shù)的序號是。

        x214.若方程3x2的實(shí)根在區(qū)間m,n內(nèi),且m,nZ,nm1,

        x則mn.

        222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(shù)(必須寫全所有的.零點(diǎn))。

        擴(kuò)展閱讀:高中數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識點(diǎn)總結(jié)

        第三章函數(shù)的應(yīng)用

        一、方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

        yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

        即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

        2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

        并利用函數(shù)的性質(zhì)找出零點(diǎn).

        4、基本初等函數(shù)的零點(diǎn):

        ①正比例函數(shù)ykx(k0)僅有一個零點(diǎn)。

        k(k0)沒有零點(diǎn)。x③一次函數(shù)ykxb(k0)僅有一個零點(diǎn)。

        ②反比例函數(shù)y④二次函數(shù)yax2bxc(a0).

        (1)△>0,方程ax2bxc0(a0)有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn).

        (2)△=0,方程ax2bxc0(a0)有兩相等實(shí)根,二次函數(shù)的圖象與x軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn).

        (3)△<0,方程ax2bxc0(a0)無實(shí)根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).

        ⑤指數(shù)函數(shù)ya(a0,且a1)沒有零點(diǎn)。⑥對數(shù)函數(shù)ylogax(a0,且a1)僅有一個零點(diǎn)1.

        ⑦冪函數(shù)yx,當(dāng)n0時,僅有一個零點(diǎn)0,當(dāng)n0時,沒有零點(diǎn)。

        5、非基本初等函數(shù)(不可直接求出零點(diǎn)的較復(fù)雜的函數(shù)),函數(shù)先把fx轉(zhuǎn)化成,這另fx0,再把復(fù)雜的函數(shù)拆分成兩個我們常見的函數(shù)y1,y2(基本初等函數(shù))個函數(shù)圖像的交點(diǎn)個數(shù)就是函數(shù)fx零點(diǎn)的個數(shù)。

        6、選擇題判斷區(qū)間a,b上是否含有零點(diǎn),只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內(nèi)是否有實(shí)數(shù)解?并說明理由。

        1

        42x7、確定零點(diǎn)在某區(qū)間a,b個數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調(diào)。Eg:求函數(shù)f(x)2xlg(x1)2的零點(diǎn)個數(shù)。

        8、函數(shù)零點(diǎn)的性質(zhì):

        從“數(shù)”的角度看:即是使f(x)0的實(shí)數(shù);

        從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo);

        若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱為不變號零點(diǎn);若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱為變號零點(diǎn).

        Eg:一元二次方程根的分布討論

        一元二次方程根的分布的基本類型

        2axbxc0(a0)的兩實(shí)根為x1,x2,且x1x2.設(shè)一元二次方程

        k為常數(shù),則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區(qū)間上的

        分布主要有以下基本類型:

        表一:(兩根與0的大小比較)

        分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結(jié)論0b02af000b02af00f00

        大致圖象(a0)得出的結(jié)論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結(jié)a論)

        af00表二:(兩根與k的大小比較)

        分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結(jié)論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結(jié)論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結(jié)a論)a0)afk0分布情況大致圖象(得出的結(jié)論表三:(根在區(qū)間上的分布)

        兩根都在m,n內(nèi)兩根有且僅有一根在m,n一根在m,n內(nèi),另一根在p,q內(nèi)(有兩種情況,只畫了一種)內(nèi),mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

        大致圖象(a0)得出的結(jié)論0fm0fn0bmn2a綜合結(jié)論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

        fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個實(shí)根,且一個大于1,一個小于1,求m的取值范圍?

        (2)關(guān)于x的方程x2(m3)x2m140有兩實(shí)根在[0,4]內(nèi),求m的取值范圍?

        2(3)關(guān)于x的方程mx2(m3)x2m140有兩個實(shí)根,且一個大于4,一個小于4,求m的取值范圍?

        9、二分法的定義

        對于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

        yf(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,

        使區(qū)間的兩個端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.

        10、給定精確度ε,用二分法求函數(shù)f(x)零點(diǎn)近似值的步驟:(1)確定區(qū)間[a,b],驗證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點(diǎn)x1;(3)計算f(x1):

        ①若f(x1)=0,則x1就是函數(shù)的零點(diǎn);

        ②若f(a)f(x1)14、根據(jù)散點(diǎn)圖設(shè)想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

        指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

        利用待定系數(shù)法求出各解析式,并對各模型進(jìn)行分析評價,選出合適的函數(shù)模型

      【函數(shù)知識點(diǎn)總結(jié)】相關(guān)文章:

      函數(shù)知識點(diǎn)總結(jié)06-23

      函數(shù)知識點(diǎn)總結(jié)02-10

      函數(shù)知識點(diǎn)03-01

      [精選]函數(shù)知識點(diǎn)03-01

      初二函數(shù)知識點(diǎn)總結(jié)01-13

      關(guān)于高中函數(shù)的知識點(diǎn)總結(jié)03-30

      初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)04-08

      函數(shù)知識點(diǎn)總結(jié)20篇04-20

      初二函數(shù)知識點(diǎn)總結(jié)07-27

      函數(shù)知識點(diǎn)總結(jié)(20篇)07-20

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        午夜福利资源片在线 | 日韩中文字幕无线码 | 日本高清中文字幕专区 | 亚洲小电影91 | 亚洲中文成人字幕 | 亚洲国产激情电影综合在线观看 |