<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      函數(shù)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2024-08-23 12:33:53 知識(shí)點(diǎn)總結(jié) 我要投稿

      (精選)函數(shù)知識(shí)點(diǎn)總結(jié)15篇

        總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,因此我們要做好歸納,寫好總結(jié)。那么你真的懂得怎么寫總結(jié)嗎?以下是小編為大家整理的函數(shù)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

      (精選)函數(shù)知識(shí)點(diǎn)總結(jié)15篇

      函數(shù)知識(shí)點(diǎn)總結(jié)1

        一次函數(shù)y=kx+b的性質(zhì):(一次函數(shù)的圖像是一條直線)

        1、一次函數(shù)ykxb(k0)經(jīng)過(guò)(0,與y軸)點(diǎn),(,0)點(diǎn).與x軸交點(diǎn)坐標(biāo)是(,0)交點(diǎn)坐標(biāo)是(0,)。

        2、k的正、負(fù)決定直線的傾斜方向

        當(dāng)k>0時(shí),y隨x的.增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

        3、|k|的大小決定直線的傾斜程度

        |k|越大,直線與x軸相交的銳角度數(shù)越大(直線陡);|k|越小,直線與x軸相交的銳角度數(shù)越小(直線緩);

        4、b的正負(fù)決定直線與y軸交點(diǎn)的位置當(dāng)b>0時(shí),直線與y軸交于y軸正半軸上;當(dāng)b<0時(shí),直線與y軸交于y軸負(fù)半軸上;當(dāng)b=0時(shí),直線經(jīng)過(guò)原點(diǎn)。

        5、k、b的符號(hào)不同,直線經(jīng)過(guò)的象限也不同。

        當(dāng)k>0時(shí),直線經(jīng)過(guò)一、三象限;當(dāng)k<0時(shí),圖像經(jīng)過(guò)二、四象限。進(jìn)一步:

        當(dāng)k>0,b>0時(shí),直線經(jīng)過(guò)一、二、三象限(不經(jīng)過(guò)第四象限)當(dāng)k>0,b<0時(shí),直線經(jīng)過(guò)一、三、四象限(不經(jīng)過(guò)第二象限)當(dāng)k>0,b=0時(shí),直線經(jīng)過(guò)一、三、象限和原點(diǎn)

        當(dāng)k<0,b>0時(shí),直線經(jīng)過(guò)一、二、四象限(不經(jīng)過(guò)第三象限)當(dāng)k<0,b<0時(shí),直線經(jīng)過(guò)二、三、四象限(不經(jīng)過(guò)第一象限)當(dāng)k<0,b=0時(shí),直線經(jīng)過(guò)二、四、象限和原點(diǎn)

        反過(guò)來(lái):不經(jīng)過(guò)第一象限指:經(jīng)過(guò)二、三、四象限或經(jīng)過(guò)二四象限和原點(diǎn)。其它類似。

      函數(shù)知識(shí)點(diǎn)總結(jié)2

        一、二次函數(shù)概念:

        a0)b,c是常數(shù)

        1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

        2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

        ⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

        ⑵a,二、二次函數(shù)的基本形式

        1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開(kāi)口越小。

        a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

        2.yax2c的性質(zhì):上加下減。

        a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

        3.yaxh的性質(zhì):左加右減。

        2a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

        4.yaxhk的性質(zhì):

        a的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減小;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

        三、二次函數(shù)圖象的平移

        1.平移步驟:

        方法一:

        ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

        ⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

        向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

        畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

        六、二次函數(shù)yax2bxc的性質(zhì)

        b4acb2b1.當(dāng)a0時(shí),拋物線開(kāi)口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

        2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

        4ab4acb2bb2.當(dāng)a0時(shí),拋物線開(kāi)口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減小;當(dāng)x時(shí),y有最大值

        2a2a4a

        七、二次函數(shù)解析式的表示方法

        1.一般式:yax2bxc(a,b,c為常數(shù),a0);

        2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

        3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

        注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

        八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

        1.二次項(xiàng)系數(shù)a

        二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

        ⑴當(dāng)a0時(shí),拋物線開(kāi)口向上,a的值越大,開(kāi)口越小,反之a(chǎn)的值越小,開(kāi)口越大;

        ⑵當(dāng)a0時(shí),拋物線開(kāi)口向下,a的值越小,開(kāi)口越小,反之a(chǎn)的值越大,開(kāi)口越大.

        總結(jié)起來(lái),a決定了拋物線開(kāi)口的大小和方向,a的正負(fù)決定開(kāi)口方向,a的大小決定開(kāi)口的大小.

        2.一次項(xiàng)系數(shù)b

        在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.

        ⑴在a0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a

        總結(jié)起來(lái),在a確定的.前提下,b決定了拋物線對(duì)稱軸的位置.

        ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說(shuō)就是“左同2a右異”總結(jié):

        3.常數(shù)項(xiàng)c

        ⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

        ⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

        ⑶當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來(lái),c決定了拋物線與y軸交點(diǎn)的位置.

        b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

        根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡(jiǎn)便.一般來(lái)說(shuō),有如下幾種情況:

        1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

        2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

        3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

        4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

        九、二次函數(shù)圖象的對(duì)稱

        二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

        1.關(guān)于x軸對(duì)稱

        yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

        yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

        2.關(guān)于y軸對(duì)稱

        yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

        22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

        3.關(guān)于原點(diǎn)對(duì)稱

        yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;

        4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

        2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

        2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱

        5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無(wú)論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開(kāi)口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開(kāi)口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.

        十、二次函數(shù)與一元二次方程:

        1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

        一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

        ①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

        b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

        a2

        ②當(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

        ③當(dāng)0時(shí),圖象與x軸沒(méi)有交點(diǎn).

        1"當(dāng)a0時(shí),圖象落在x軸的上方,無(wú)論x為任何實(shí)數(shù),都有y0;

        2"當(dāng)a0時(shí),圖象落在x軸的下方,無(wú)論x為任何實(shí)數(shù),都有y0.

        2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        3.二次函數(shù)常用解題方法總結(jié):

        ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

        ⑵求二次函數(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

        ⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

        ⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).

        ⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

        0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無(wú)實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無(wú)交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

        y=3x2y=3(x-2)2y=x22

        y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

        剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)

        最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

      函數(shù)知識(shí)點(diǎn)總結(jié)3

        f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

        ⑴函數(shù)區(qū)間單調(diào)性的判斷思路

        ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1

        ⅱ做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。

        ⅲ判斷變形后的表達(dá)式f(x1)-f(x2)的符號(hào),指出單調(diào)性。

        ⑵復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個(gè)函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

        ⑶注意事項(xiàng)

        函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的'區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

        2、函數(shù)的整體性質(zhì)——奇偶性

        對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

        對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

        小編推薦:高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納總結(jié)

        ⑴奇函數(shù)和偶函數(shù)的性質(zhì)

        ⅰ無(wú)論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱。

        ⅱ奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖像關(guān)于y軸對(duì)稱。

        ⑵函數(shù)奇偶性判斷思路

        ⅰ先確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不關(guān)于原點(diǎn)對(duì)稱,則為非奇非偶函數(shù)。

        ⅱ確定f(x)和f(-x)的關(guān)系:

        若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

        若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

        3、函數(shù)的最值問(wèn)題

        ⑴對(duì)于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

        ⑵對(duì)于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

        ⑶關(guān)于二次函數(shù)在閉區(qū)間的最值問(wèn)題

        ⅰ判斷二次函數(shù)的頂點(diǎn)是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

        ⅱ若二次函數(shù)的頂點(diǎn)在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時(shí),頂點(diǎn)為最小值,a0時(shí)的最大值或a

        ⅲ若二次函數(shù)的頂點(diǎn)不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

        若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

        若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

        3高一數(shù)學(xué)基本初等函數(shù)1、指數(shù)函數(shù):函數(shù)y=ax (a>0且a≠1)叫做指數(shù)函數(shù)

        a的取值a>1 0

        注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:

        a>1時(shí),最小值f(a),最大值f(b);0

        ⑵對(duì)于任意指數(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。

        2、對(duì)數(shù)函數(shù):函數(shù)y=logax(a>0且a≠1)),叫做對(duì)數(shù)函數(shù)

        a的取值a>1 0

        3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。

        ⑴所有冪函數(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過(guò)定點(diǎn)(1,1)。

        ⑵a>0時(shí),冪函數(shù)圖像過(guò)原點(diǎn),且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。

        ⑶a

        當(dāng)x從右側(cè)無(wú)限接近原點(diǎn)時(shí),圖像無(wú)限接近y軸正半軸;

        當(dāng)y無(wú)限接近正無(wú)窮時(shí),圖像無(wú)限接近x軸正半軸。

        冪函數(shù)總圖見(jiàn)下頁(yè)。

        4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。

        反函數(shù)圖像與原函數(shù)圖像關(guān)于直線y=x對(duì)稱。

      函數(shù)知識(shí)點(diǎn)總結(jié)4

        三角和的公式

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        倍角公式

        tan2A = 2tanA/(1-tan2 A)

        Sin2A=2SinA?CosA

        Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

        三倍角公式

        sin3A = 3sinA-4(sinA)3;

        cos3A = 4(cosA)3 -3cosA

        tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

        三角函數(shù)特殊值

        α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

        α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

        a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

        α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

        α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

        α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

        α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

        α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

        α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

        α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

        α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        三角函數(shù)記憶順口溜

        1三角函數(shù)記憶口訣

        “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

        以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

        2符號(hào)判斷口訣

        全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

        也可以這樣理解:一、二、三、四指的.角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的都是負(fù)值。

        “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

        3三角函數(shù)順口溜

        三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

        同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

        中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

        頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

        變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

        將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,

        余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

        計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

        逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

        萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

        一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

        三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

        利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

      函數(shù)知識(shí)點(diǎn)總結(jié)5

        特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

        當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

        此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

        當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

        當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

        當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的'圖象。

        當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

        當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

        因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

        2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

        3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

        4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

        當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

        5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

      函數(shù)知識(shí)點(diǎn)總結(jié)6

        一、函數(shù)的定義域的常用求法:

        1、分式的分母不等于零;

        2、偶次方根的被開(kāi)方數(shù)大于等于零;

        3、對(duì)數(shù)的真數(shù)大于零;

        4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

        5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

        6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

        二、函數(shù)的解析式的常用求法:

        1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法

        三、函數(shù)的值域的常用求法:

        1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

        四、函數(shù)的'最值的常用求法:

        1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

        五、函數(shù)單調(diào)性的常用結(jié)論:

        1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)

        2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

        3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

        4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

        5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

        六、函數(shù)奇偶性的常用結(jié)論:

        1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

        2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

        3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

        4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

        5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

      函數(shù)知識(shí)點(diǎn)總結(jié)7

        基本概念

        1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。

        2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

        *判斷Y是否為X的函數(shù),只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對(duì)應(yīng)3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。(x的取值范圍)一次函數(shù)

        1..自變量x和因變量y有如下關(guān)系:

        y=kx+b(k為任意不為零實(shí)數(shù),b為任意實(shí)數(shù))則此時(shí)稱y是x的一次函數(shù)。特別的,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為任意不為零實(shí)數(shù))

        定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實(shí)際有意義。2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。一次函數(shù)性質(zhì):

        1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

        2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。3.函數(shù)不是數(shù),它是指某一變量過(guò)程中兩個(gè)變量之間的關(guān)系。

        特別地,當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。4、特殊位置關(guān)系

        當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等

        當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1)

        應(yīng)用

        一次函數(shù)y=kx+b的性質(zhì)是:(1)當(dāng)k>0時(shí),y隨x的增大而增大;(2)當(dāng)ky2,則x1與x2的大小關(guān)系是()

        A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。

        判斷函數(shù)圖象的位置例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過(guò)()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

        解:由kb>0,知k、b同號(hào)。因?yàn)閥隨x的增大而減小,所以k

        (5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。5、函數(shù)的圖像

        一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

        6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點(diǎn)法畫函數(shù)圖形的一般步驟

        第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);

        第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。8、函數(shù)的`表示方法

        列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

        解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。

        圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。9、正比例函數(shù)及性質(zhì)

        一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過(guò)點(diǎn):(0,0)、(1,k)

        走向:k>0時(shí),圖像經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當(dāng)b0,圖象經(jīng)過(guò)第一、三象限;k0,圖象經(jīng)過(guò)第一、二象限;b0,y隨x的增大而增大;k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;當(dāng)b

        .函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是()

        將直線y=3x向下平移5個(gè)單位,得到直線;將直線y=-x-5向上平移5個(gè)單位,得到直線.若直線yxa和直線yxb的交點(diǎn)坐標(biāo)為(m,8),則ab____________.

        已知函數(shù)y=3x+1,當(dāng)自變量增加m時(shí),相應(yīng)的函數(shù)值增加()A.3m+1B.3mC.mD.3m-111、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識(shí):經(jīng)過(guò)兩點(diǎn)能畫出一條直線,并且只能畫出一條直線,即兩點(diǎn)確定一條直線,所以畫一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),坐標(biāo)或縱坐標(biāo)為0的點(diǎn).

        b>0經(jīng)過(guò)第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過(guò)第一、二、四象限經(jīng)過(guò)第二、三、四象限經(jīng)過(guò)第二、四象限k0時(shí),向上平移;當(dāng)b

        (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b①

        和y2=kx2+b②

        (3)解這個(gè)二元一次方程,得到k,b的值。(4)最后得到一次函數(shù)的表達(dá)式。15、一元一次方程與一次函數(shù)的關(guān)系

        任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.

      函數(shù)知識(shí)點(diǎn)總結(jié)8

        1、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        2、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)p(h,k)]

        交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

        3、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        4、拋物線的性質(zhì)

        1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x = -b/2a。

        對(duì)稱軸與拋物線唯一的.交點(diǎn)為拋物線的頂點(diǎn)p。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

        2.拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為:p ( -b/2a,(4ac-b^2)/4a )當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)δ= b^2-4ac=0時(shí),p在x軸上。

        3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a

        4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab

        5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6.拋物線與x軸交點(diǎn)個(gè)數(shù)

        δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        δ= b^2-4ac

        5、二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

        當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

        此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸:

        當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

        當(dāng)h

        當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

        當(dāng)h>0,k

        當(dāng)h0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a

        4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點(diǎn)間的距離ab=|x-x|

        當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

        當(dāng)△0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

      函數(shù)知識(shí)點(diǎn)總結(jié)9

        1.常量和變量

        在某變化過(guò)程中可以取不同數(shù)值的量,叫做變量.在某變化過(guò)程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

        2.函數(shù)

        設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

        3.自變量的取值范圍

        (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

        (3)偶次方根:被開(kāi)方數(shù)為非負(fù)數(shù).

        (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

        4.函數(shù)值

        對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

        5.函數(shù)的表示法

        (1)解析法;(2)列表法;(3)圖象法.

        6.函數(shù)的圖象

        把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

        (1)寫出函數(shù)解析式及自變量的取值范圍;

        (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

        (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

        (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).

        7.一次函數(shù)

        (1)一次函數(shù)

        如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

        特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

        (2)一次函數(shù)的圖象

        一次函數(shù)y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過(guò)原點(diǎn)的直線.需要說(shuō)明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

        (3)一次函數(shù)的性質(zhì)

        當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

        (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

        ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

        ②二元一次方程組對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的'坐標(biāo).

        ③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

        8.反比例函數(shù)(1)反比例函數(shù)

        (1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

        (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

        (3)反比例函數(shù)的性質(zhì)

        ①當(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

        ②當(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

        ③反比例函數(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

        (4)k的兩種求法

        ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

        若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

        (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題

        若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無(wú)交點(diǎn);

        當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

        1.二次函數(shù)

        如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

        幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

        2.二次函數(shù)的圖象

        二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過(guò)平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

        3.二次函數(shù)的性質(zhì)

        二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

        (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

        (2)若a>0,拋物線y=ax2+bx+c的開(kāi)口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減小;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開(kāi)口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減小;當(dāng)x=時(shí),y有最大值;

        (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

        (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

        <0時(shí),拋物線y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

        拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來(lái)決定.

      函數(shù)知識(shí)點(diǎn)總結(jié)10

        課題

        3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

        教學(xué)目標(biāo)

        1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

        教學(xué)重點(diǎn)

        掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

        教學(xué)難點(diǎn)

        掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的`概念及其圖形和性質(zhì)

        教學(xué)方法

        講練結(jié)合法

        教學(xué)過(guò)程

        (I)知識(shí)要點(diǎn)(見(jiàn)下表:)

        第三章第29頁(yè)函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過(guò)點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

        第三章第30頁(yè)b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)

        2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

        例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)

        (3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過(guò)點(diǎn)(1,7)。2,

        解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

        abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

        a2,故y2(x1)252x24x3

        (3)∵拋物線對(duì)稱軸為x2;

        ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

        ∴所求二次函數(shù)為yx24x2,

        2,0)、B(222,0)

        2)(x22)a(x2)22a,將(1,7)

        5),例2:二次函數(shù)的圖像過(guò)點(diǎn)(0,8),(1,(4,0)

        (1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

        例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

        113x1(x)2,知函數(shù)的圖像開(kāi)口向上,對(duì)稱軸為x

        224111]上是增函數(shù)。∴依題設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

      函數(shù)知識(shí)點(diǎn)總結(jié)11

        1、變量與常量

        在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

        一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

        2、函數(shù)解析式

        用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

        使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

        3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

        (1)解析法

        兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

        (2)列表法

        把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

        (3)圖像法

        用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

        4、由函數(shù)解析式畫其圖像的一般步驟

        (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

        (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

        (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

        初中怎樣學(xué)好數(shù)學(xué)

        學(xué)好初中數(shù)學(xué)培養(yǎng)運(yùn)算能力

        初中數(shù)學(xué)涉及到大量的運(yùn)算內(nèi)容,比如有理數(shù)的運(yùn)算、因式分解、根式的運(yùn)算和解方程,這些都是初中數(shù)學(xué)涉及到的知識(shí)內(nèi)容,如果初中生數(shù)學(xué)運(yùn)算能力不過(guò)關(guān),那么成績(jī)?cè)趺茨芴岣吣?所以運(yùn)算是學(xué)好初中數(shù)學(xué)的基本功,這個(gè)基本功一定要扎實(shí),不然以后的.初中數(shù)學(xué)就可以不用學(xué)習(xí)了。

        初中生在解答運(yùn)算題的時(shí)候,不要急躁,靜下心來(lái)。初中數(shù)學(xué)運(yùn)算的過(guò)程是很重要的,這也是初中生對(duì)于數(shù)學(xué)邏輯和思維的培養(yǎng)過(guò)程,結(jié)果要準(zhǔn)確;同時(shí)初中生還有要絕對(duì)的自信,不要求速度可以慢一點(diǎn)的,盡量一次做對(duì)。

        學(xué)好初中數(shù)學(xué)做題的數(shù)量不能少

        不可否認(rèn),想要學(xué)好初中數(shù)學(xué),就要做一定量的數(shù)學(xué)題。不贊同大量的刷題,那樣沒(méi)有什么意義。初中生做數(shù)學(xué)題主要是以基礎(chǔ)題的練習(xí)為主,將初中數(shù)學(xué)的基礎(chǔ)題弄懂的同時(shí),反復(fù)的做一些比較典型的題,這樣才是初中生正確的學(xué)習(xí)數(shù)學(xué)方式。

        在初中階段,學(xué)生要鍛煉自己數(shù)學(xué)的抽象思維能力,最好的結(jié)果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說(shuō)的熟能生巧。同時(shí)也是初中生數(shù)學(xué)基礎(chǔ)知識(shí)牢固的體現(xiàn)。相反的,有的初中生在做練習(xí)題的時(shí)候,比較盲目和急躁,這樣的結(jié)果就是粗心大意,馬虎出錯(cuò)。

        課上重視聽(tīng)講課下及時(shí)復(fù)習(xí)

        初中生數(shù)學(xué)能力的培養(yǎng)一部分在于平時(shí)做題的過(guò)程中,另一部分就在課堂上。所以初中生想要學(xué)好數(shù)學(xué),就要重視課內(nèi)的學(xué)習(xí)效率,在課上的時(shí)候要跟緊老師的思路,大膽的推測(cè)老師下一步講課的知識(shí),尤其是基礎(chǔ)知識(shí)的學(xué)習(xí)。在課后初中生還要對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)點(diǎn)及時(shí)復(fù)習(xí)。對(duì)于每個(gè)階段初中數(shù)學(xué)的學(xué)習(xí)要進(jìn)行知識(shí)點(diǎn)歸納和整理。

        初中數(shù)學(xué)多項(xiàng)式知識(shí)點(diǎn)

        1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

        2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

        3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

        4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

        5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。

        6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

        7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

      函數(shù)知識(shí)點(diǎn)總結(jié)12

        一次函數(shù)

        一、定義與定義式:

        自變量x和因變量y有如下關(guān)系:

        y=kx+b

        則此時(shí)稱y是x的一次函數(shù)。

        特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

        即:y=kx (k為常數(shù),k0)

        二、一次函數(shù)的性質(zhì):

        1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

        即:y=kx+b (k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

        2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

        三、一次函數(shù)的圖像及性質(zhì):

        1、作法與圖形:通過(guò)如下3個(gè)步驟

        (1)列表;

        (2)描點(diǎn);

        (3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

        2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

        3、k,b與函數(shù)圖像所在象限:

        當(dāng)k0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

        當(dāng)k0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

        當(dāng)b0時(shí),直線必通過(guò)一、二象限;

        當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

        當(dāng)b0時(shí),直線必通過(guò)三、四象限。

        特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時(shí),當(dāng)k0時(shí),直線只通過(guò)一、三象限;當(dāng)k0時(shí),直線只通過(guò)二、四象限。

        四、確定一次函數(shù)的表達(dá)式:

        已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

        (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

        (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②

        (3)解這個(gè)二元一次方程,得到k,b的值。

        (4)最后得到一次函數(shù)的表達(dá)式。

        五、一次函數(shù)在生活中的應(yīng)用:

        1、當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

        2、當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

        六、常用公式:(不全,希望有人補(bǔ)充)

        1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

        2、求與x軸平行線段的中點(diǎn):|x1—x2|/2

        3、求與y軸平行線段的中點(diǎn):|y1—y2|/2

        4、求任意線段的長(zhǎng):(x1—x2)^2+(y1—y2)^2 (注:根號(hào)下(x1—x2)與(y1—y2)的平方和)

        二次函數(shù)

        I、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:

        y=ax^2+bx+c

        (a,b,c為常數(shù),a0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

        頂點(diǎn)式:y=a(x—h)^2+k [拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

        III、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的`圖像,

        可以看出,二次函數(shù)的圖像是一條拋物線。

        IV、拋物線的性質(zhì)

        1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

        x= —b/2a。

        對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

        2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P( —b/2a,(4ac—b^2)/4a )

        當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)= b^2—4ac=0時(shí),P在x軸上。

        3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a0時(shí),拋物線向上開(kāi)口;當(dāng)a0時(shí),拋物線向下開(kāi)口。

        |a|越大,則拋物線的開(kāi)口越小。

        4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。

        5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點(diǎn)個(gè)數(shù)

        = b^2—4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        = b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        = b^2—4ac0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        V、二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

        當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

        即ax^2+bx+c=0

        此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

        函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

        解析式頂點(diǎn)坐標(biāo)對(duì)稱軸

        y=ax^2(0,0) x=0

        y=a(x—h)^2(h,0) x=h

        y=a(x—h)^2+k(h,k) x=h

        y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

        當(dāng)h0時(shí),y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

        當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、

        當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

        2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開(kāi)口向上,當(dāng)a0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、

        3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時(shí),y隨x的增大而減小;當(dāng)x —b/2a時(shí),y隨x的增大而增大、若a0,當(dāng)x —b/2a時(shí),y隨x的增大而增大;當(dāng)x —b/2a時(shí),y隨x的增大而減小、

        4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

        (a0)的兩根、這兩點(diǎn)間的距離AB=|x—x|

        當(dāng)△=0、圖象與x軸只有一個(gè)交點(diǎn);

        當(dāng)△0、圖象與x軸沒(méi)有交點(diǎn)、當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0、

        5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時(shí),y最小(大)值=(4ac—b^2)/4a、

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值、

        6、用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a0)、

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、

        7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)、

        反比例函數(shù)

        形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

        當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

        當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

        知識(shí)點(diǎn):

        1、過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。

        2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

      函數(shù)知識(shí)點(diǎn)總結(jié)13

        一、函數(shù)

        (1)定義:設(shè)在某變化過(guò)程中有兩個(gè)變量x、y,對(duì)于x的每一個(gè)值,y都有唯一的值與之對(duì)應(yīng),那么就說(shuō)x是自變量,y是因變量,此時(shí),也稱y是x的函數(shù)。

        (2)本質(zhì):一一對(duì)應(yīng)關(guān)系或多一對(duì)應(yīng)關(guān)系。

        有序?qū)崝?shù)對(duì)平面直角坐標(biāo)系上的點(diǎn)

        (3)表示方法:解析法、列表法、圖象法。

        (4)自變量取值范圍:

        對(duì)于實(shí)際問(wèn)題,自變量取值必須使實(shí)際問(wèn)題有意義;

        對(duì)于純數(shù)學(xué)問(wèn)題,自變量取值必須保證函數(shù)關(guān)系式有意義:

        ①分式中,分母≠0;

        ②二次根式中,被開(kāi)方數(shù)≥0;

        ③整式中,自變量取全體實(shí)數(shù);

        ④混合運(yùn)算式中,自變量取各解集的'公共部份。

        二、正比例函數(shù)與反比例函數(shù)

        兩函數(shù)的異同點(diǎn)

        三、一次函數(shù)(圖象為直線)

        (1)定義式:y=kx+b(k、b為常數(shù),k≠0);自變量取全體實(shí)數(shù)。

        (2)性質(zhì):

        ①k>0,過(guò)第一、三象限,y隨x的增大而增大;

        k<0,過(guò)第二、四象限,y隨x的增大而減小。

        ②b=0,圖象過(guò)(0,0);

        b>0,圖象與y軸的交點(diǎn)(0,b)在x軸上方;

        b<0,圖象與y軸的交點(diǎn)(0,b)在x軸下方。

        四、二次函數(shù)(圖象為拋物線)

        (1)自變量取全體實(shí)數(shù)

        一般式:y=ax2+bx+c(a、b、c為常數(shù),a≠0),其中(0,c)為拋物線與y軸的交點(diǎn);

        頂點(diǎn)式:y=a(x—h)2+k(a、h、k為常數(shù),a≠0),其中(h,k)為拋物線頂點(diǎn);

        h=—,k=零點(diǎn)式:y=a(x—x1)(x—x2)(a、x1、x2為常數(shù),a≠0)其中(x1,0)、(x2,0)為拋物線與x軸的交點(diǎn)。x1、x2 =(b 2 —4ac ≥0)

        (2)性質(zhì):

        ①對(duì)稱軸:x=—或x=h;

        ②頂點(diǎn):(—,)或(h,k);

        ③最值:當(dāng)x=—時(shí),y有最大(小)值,為或當(dāng)x=h時(shí),y有最大(小)值,為k;

      函數(shù)知識(shí)點(diǎn)總結(jié)14

        本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

        一、函數(shù)的單調(diào)性

        1、函數(shù)單調(diào)性的定義

        2、函數(shù)單調(diào)性的判斷和證明:

        (1)定義法

        (2)復(fù)合函數(shù)分析法

        (3)導(dǎo)數(shù)證明法

        (4)圖象法

        二、函數(shù)的奇偶性和周期性

        1、函數(shù)的奇偶性和周期性的定義

        2、函數(shù)的奇偶性的判定和證明方法

        3、函數(shù)的周期性的判定方法

        三、函數(shù)的圖象

        1、函數(shù)圖象的作法

        (1)描點(diǎn)法

        (2)圖象變換法

        2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。

        常見(jiàn)考法

        本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的`重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

        誤區(qū)提醒

        1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。

        2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。

        3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。

        4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。

        5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

      函數(shù)知識(shí)點(diǎn)總結(jié)15

        k0時(shí),y隨x的增大而減小,直線一定過(guò)二、四象限(3)若直線l1:yk1xb1l2:yk2xb2

        當(dāng)k1k2時(shí),l1//l2;當(dāng)b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。

        (4)當(dāng)b>0時(shí)直線與y軸交于原點(diǎn)上方;當(dāng)b學(xué)大教育

        (1)是中心對(duì)稱圖形,對(duì)中稱心是原點(diǎn)(2)對(duì)稱性:是軸直線yx和yx(2)是軸對(duì)稱圖形,對(duì)稱k0時(shí)兩支曲線分別位于一、三象限且每一象限內(nèi)y隨x的增大而減小(3)

        k0時(shí)兩支曲線分別位于二、四象限且每一象限內(nèi)y隨x的增大而增大(4)過(guò)圖象上任一點(diǎn)作x軸與y軸的垂線與坐標(biāo)軸構(gòu)成的矩形面積為|k|。

        P(1)應(yīng)用在u3.應(yīng)用(2)應(yīng)用在(3)其它F上SS上t其要點(diǎn)是會(huì)進(jìn)行“數(shù)結(jié)形合”來(lái)解決問(wèn)題二、二次函數(shù)

        1.定義:應(yīng)注意的問(wèn)題

        (1)在表達(dá)式y(tǒng)=ax2+bx+c中(a、b、c為常數(shù)且a≠0)(2)二次項(xiàng)指數(shù)一定為22.圖象:拋物線

        3.圖象的性質(zhì):分五種情況可用表格來(lái)說(shuō)明表達(dá)式(1)y=ax2頂點(diǎn)坐標(biāo)對(duì)稱軸(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育

        表達(dá)式h)2+k頂點(diǎn)坐標(biāo)對(duì)稱軸直線x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育

        一次函數(shù)圖象和性質(zhì)

        【知識(shí)梳理】

        1.正比例函數(shù)的一般形式是y=kx(k≠0),一次函數(shù)的一般形式是y=kx+b(k≠0).2.一次函數(shù)ykxb的圖象是經(jīng)過(guò)(3.一次函數(shù)ykxb的圖象與性質(zhì)

        圖像的大致位置經(jīng)過(guò)象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質(zhì)而而而而

        【思想方法】數(shù)形結(jié)合

        k、b的'符號(hào)k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線.k反比例函數(shù)圖象和性質(zhì)

        【知識(shí)梳理】

        1.反比例函數(shù):一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).2.反比例函數(shù)的圖象和性質(zhì)

        k的符號(hào)k>0yoxk<0yox

        圖像的大致位置經(jīng)過(guò)象限性質(zhì)

        第象限在每一象限內(nèi),y隨x的增大而第象限在每一象限內(nèi),y隨x的增大而3.k的幾何含義:反比例函數(shù)y=的幾何意義,即過(guò)雙曲線y=

        k(k≠0)中比例系數(shù)kxk(k≠0)上任意一點(diǎn)P作x4

        x軸、y軸垂線,設(shè)垂足分別為A、B,則所得矩形OAPB

        函數(shù)學(xué)習(xí)方法學(xué)大教育

        的面積為.

        【思想方法】數(shù)形結(jié)合

        二次函數(shù)圖象和性質(zhì)

        【知識(shí)梳理】

        1.二次函數(shù)ya(xh)2k的圖像和性質(zhì)

        圖象開(kāi)口對(duì)稱軸頂點(diǎn)坐標(biāo)最值增減性

        在對(duì)稱軸左側(cè)在對(duì)稱軸右側(cè)當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數(shù)

        【思想方法】

        1.常用解題方法設(shè)k法2.常用基本圖形雙直角

        【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=

        14,則tanB=______;(2)若cosA=,則tanB=______.255

        函數(shù)學(xué)習(xí)方法學(xué)大教育

        例題2.(1)已知:cosα=

        23,則銳角α的取值范圍是()A.0°

      【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      函數(shù)知識(shí)點(diǎn)總結(jié)06-23

      函數(shù)知識(shí)點(diǎn)總結(jié)02-10

      函數(shù)知識(shí)點(diǎn)總結(jié)【熱門】08-21

      函數(shù)知識(shí)點(diǎn)總結(jié)(精)08-21

      (精品)函數(shù)知識(shí)點(diǎn)總結(jié)08-22

      函數(shù)知識(shí)點(diǎn)03-01

      [精選]函數(shù)知識(shí)點(diǎn)03-01

      初二函數(shù)知識(shí)點(diǎn)總結(jié)01-13

      關(guān)于高中函數(shù)的知識(shí)點(diǎn)總結(jié)03-30

      初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-08

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲国产精品一在线观看AV | 中文字幕亚洲乱码精品 | 一本大道香久在线播放 | 中文字幕在线观看网址 | 欧美中日韩国产精品卡通动漫一区二区 | 午夜欧美精品久久 |