<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)

      時(shí)間:2025-03-13 09:04:12 知識(shí)點(diǎn)總結(jié) 我要投稿

      高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)

        總結(jié)是在某一特定時(shí)間段對(duì)學(xué)習(xí)和工作生活或其完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書(shū)面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識(shí)上來(lái),不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。總結(jié)怎么寫(xiě)才不會(huì)流于形式呢?下面是小編為大家收集的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

      高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

        平均值等于每個(gè)小長(zhǎng)方形面積(即概率)乘每組橫坐標(biāo)的中點(diǎn),然后加和。

        平均數(shù),首先得直方圖應(yīng)該歸一化,也就是說(shuō)所有矩形的面積之和為1,然后每個(gè)矩形的面積代表其底邊中點(diǎn)橫坐標(biāo)的數(shù)的頻率,那么面積乘以橫坐標(biāo)就相當(dāng)于頻率乘以橫坐標(biāo),得到的當(dāng)然是平均數(shù)。

        頻率直方圖中是沒(méi)有樣本數(shù)據(jù)的在某一個(gè)分組里,分布在這個(gè)分組的樣本數(shù)據(jù)沒(méi)法找得出來(lái),然后也分布不均勻,所以就用這個(gè)組的中點(diǎn)的橫坐標(biāo)來(lái)表示這個(gè)分組的樣本數(shù)據(jù)的平均值。

        而每一個(gè)小長(zhǎng)方形的面積是表示相應(yīng)的頻率,(相當(dāng)于相應(yīng)數(shù)據(jù)的百分比)所以平均數(shù)等于每個(gè)小長(zhǎng)方形的面積乘以相應(yīng)的分組的底邊中點(diǎn)橫坐標(biāo)的之和。

        頻率分布直方圖的運(yùn)用

        頻率分布直方圖能清楚顯示各組頻數(shù)分布情況又易于顯示各組之間頻數(shù)的差別。它主要是為了將我們獲取的數(shù)據(jù)直觀、形象地表示出來(lái),讓我們能夠更好了解數(shù)據(jù)的分布情況,因此其中組距、組數(shù)起關(guān)鍵作用。

        分組過(guò)少,數(shù)據(jù)就非常集中;分組過(guò)多,數(shù)據(jù)就非常分散,這就掩蓋了分布的特征。當(dāng)數(shù)據(jù)在100以內(nèi)時(shí),一般分5~12組為宜。

        從頻率分布直方圖可以估計(jì)出的幾個(gè)數(shù)據(jù):

        眾數(shù):頻率分布直方圖中最高矩形的底邊中點(diǎn)的橫坐標(biāo) 。

        算術(shù)平均數(shù):頻率分布直方圖每組數(shù)值的中間值乘以頻率后相加。

        加權(quán)平均數(shù):加權(quán)平均數(shù)就是所有的頻率乘以數(shù)值后的和相加。

        中位數(shù):把頻率分布直方圖分成兩個(gè)面積相等部分的平行于Y軸的直線橫坐標(biāo)。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2

        一、高中數(shù)列基本公式:

        1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=

        2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

        3、等差數(shù)列的前n項(xiàng)和公式:Sn=

        Sn=

        Sn=

        當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

        4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k

        (其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

        5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

        當(dāng)q≠1時(shí),Sn=

        Sn=

        二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

        1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

        2、等差數(shù)列{an}中,若m+n=p+q,則

        3、等比數(shù)列{an}中,若m+n=p+q,則

        4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

        5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

        6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

        7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

        8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

        9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,a+d,a+3d

        10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

        四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3

        總體和樣本

        ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。

        ②把每個(gè)研究對(duì)象叫做個(gè)體。

        ③把總體中個(gè)體的總數(shù)叫做總體容量。

        ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量。

        簡(jiǎn)單隨機(jī)抽樣

        也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨。

        機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

        簡(jiǎn)單隨機(jī)抽樣常用的方法

        ①抽簽法

        ②隨機(jī)數(shù)表法

        ③計(jì)算機(jī)模擬法

        ④使用統(tǒng)計(jì)軟件直接抽取。

        在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

        ①總體變異情況;

        ②允許誤差范圍;

        ③概率保證程度。

        抽簽法

        ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

        ②準(zhǔn)備抽簽的工具,實(shí)施抽簽;

        ③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

        集合的分類(lèi):

        (1)按元素屬性分類(lèi),如點(diǎn)集,數(shù)集。

        (2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

        關(guān)于集合的概念:

        (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

        (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

        (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

        集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類(lèi):

        含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

        非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

        在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

        整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

        有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱(chēng),一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

        實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

        1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。

        有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

        例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

        無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

        2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

        例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

        而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

        一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

        例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5

        什么是不等式?

        一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。總的來(lái)說(shuō),用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。

        通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≤,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。

        數(shù)學(xué)知識(shí)點(diǎn)1、不等式性質(zhì)比較大小方法:

        (1)作差比較法

        (2)作商比較法

        不等式的基本性質(zhì)

        ①對(duì)稱(chēng)性:a > b,b > a

        ②傳遞性:a > b,b > ca > c

        ③可加性:a > b a + c > b + c

        ④可積性:a > b,c > 0,ac > bc

        ⑤加法法則:a > b,c > d,a + c > b + d

        ⑥乘法法則:a > b > 0,c > d > 0,ac > bd

        ⑦乘方法則:a > b > 0,an > bn(n∈N)

        ⑧開(kāi)方法則:a > b > 0

        數(shù)學(xué)知識(shí)點(diǎn)2、算術(shù)平均數(shù)與幾何平均數(shù)定理:

        (1)如果a、b∈R,那么a2 + b2 ≥2ab;(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))

        (2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:

        如果為實(shí)數(shù),則重要結(jié)論

        (1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;

        (2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。

        數(shù)學(xué)知識(shí)點(diǎn)3、證明不等式的常用方法:

        比較法:比較法是最基本、最重要的方法。

        當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。

        綜合法:從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

        分析法:不等式兩邊的聯(lián)系不夠清楚,通過(guò)尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6

        有界性

        設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區(qū)間X上有界,否則稱(chēng)f(x)在區(qū)間上無(wú)界。

        單調(diào)性

        設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱(chēng)函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱(chēng)為單調(diào)函數(shù)。

        奇偶性

        設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。

        幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。

        奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

        設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。

        幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱(chēng),亦即其圖在對(duì)y軸映射后不會(huì)改變。

        偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。

        偶函數(shù)不可能是個(gè)雙射映射。

        連續(xù)性

        在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱(chēng)為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性)。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7

        1、命題的四種形式及其相互關(guān)系是什么?

        (互為逆否關(guān)系的命題是等價(jià)命題。)

        原命題與逆否命題同真、同假;逆命題與否命題同真同假。

        2、對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

        (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

        3、函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

        (定義域、對(duì)應(yīng)法則、值域)

        4、反函數(shù)存在的條件是什么?

        (一一對(duì)應(yīng)函數(shù))

        求反函數(shù)的步驟掌握了嗎?

        (①反解x;②互換x、y;③注明定義域)

        5、反函數(shù)的性質(zhì)有哪些?

        ①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng);

        ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

        6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

        (f(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8

        一、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

        結(jié)構(gòu)特征

        圖例

        棱柱

        (1)兩底面相互平行,其余各面都是平行四邊形;

        (2)側(cè)棱平行且相等。

        圓柱

        (1)兩底面相互平行;

        (2)側(cè)面的母線平行于圓柱的軸;

        (3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體。

        棱錐

        (1)底面是多邊形,各側(cè)面均是三角形;

        (2)各側(cè)面有一個(gè)公共頂點(diǎn)。

        圓錐

        (1)底面是圓;

        (2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體。

        棱臺(tái)

        (1)兩底面相互平行;

        (2)是用一個(gè)平行于棱錐底面的平面去截棱錐,底面和截面之間的部分。

        圓臺(tái)

        (1)兩底面相互平行;

        (2)是用一個(gè)平行于圓錐底面的平面去截圓錐,底面和截面之間的部分。

        球

        (1)球心到球面上各點(diǎn)的距離相等;

        (2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體。

        二、簡(jiǎn)單組合體的結(jié)構(gòu)特征

        三、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

        注:

        正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

        俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

        側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

        四、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

        斜二測(cè)畫(huà)法特點(diǎn):

        ①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

        ②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

        五、柱體、錐體、臺(tái)體的表面積與體積

        (1)幾何體的表面積為幾何體各個(gè)面的面積的和。

        (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線)

        (3)柱體、錐體、臺(tái)體的體積公式

        (4)球體的表面積和體積公式:

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9

        ★高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

        一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國(guó)數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫(xiě)一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說(shuō)的導(dǎo)數(shù)f(A)。

        二、17世紀(jì)————廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開(kāi)始系統(tǒng)地研究微積分。牛頓的微積分理論被稱(chēng)為“流數(shù)術(shù)”他稱(chēng)變量為流量稱(chēng)變量的變化率為流數(shù)相當(dāng)于我們所說(shuō)的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無(wú)窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無(wú)窮級(jí)數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。

        三、19世紀(jì)導(dǎo)數(shù)————逐漸成熟的理論1750年達(dá)朗貝爾在為法國(guó)科學(xué)家院出版的《百科全書(shū)》第五版寫(xiě)的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號(hào)簡(jiǎn)單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無(wú)窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無(wú)窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語(yǔ)言對(duì)微積分中出現(xiàn)的各種類(lèi)型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見(jiàn)的形式。

        四、實(shí)無(wú)限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無(wú)限理論即無(wú)限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無(wú)限指一種意識(shí)形態(tài)上的過(guò)程比如無(wú)限接近。就歷史來(lái)看兩種理論都有一定的道理。其中實(shí)無(wú)限用了150年后來(lái)極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長(zhǎng)期爭(zhēng)論的問(wèn)題后來(lái)由波粒二象性來(lái)統(tǒng)一。微積分無(wú)論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

        ★高中數(shù)學(xué)導(dǎo)數(shù)要點(diǎn)

        1、求函數(shù)的單調(diào)性:

        利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo):

        (1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);

        (2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);

        (3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

        利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:

        ①求函數(shù)yf(x)的定義域;

        ②求導(dǎo)數(shù)f(x);

        ③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;

        ④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

        反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

        (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

        (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

        (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

        2、求函數(shù)的極值:

        設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數(shù)f(x)的極小值(或極大值)。

        可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

        (1)確定函數(shù)f(x)的定義域;

        (2)求導(dǎo)數(shù)f(x);

        (3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

        (4)檢查f(x)的符號(hào)并由表格判斷極值。

        3、求函數(shù)的最大值與最小值:

        如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

        求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:

        (1)求f(x)在區(qū)間(a,b)上的極值;

        (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

        4、解決不等式的有關(guān)問(wèn)題:

        (1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。

        f(x)(xA)的值域是[a,b]時(shí),不等式f(x)0恒成立的充要條件是f(x)max0,即b0;不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

        f(x)(xA)的值域是(a,b)時(shí),不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

        (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

        5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

        實(shí)際生活求解最大(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

        2、集合的中元素的三個(gè)特性:

        1)元素的確定性;

        2)元素的互異性;

        3)元素的無(wú)序性。

        說(shuō)明:

        (1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

        (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

        (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

        (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

        1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。

        2)集合的表示方法:列舉法與描述法。

        注意啊:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        關(guān)于“屬于”的概念

        集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

        列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

        描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

        ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

        ②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

        4、集合的分類(lèi):

        1)有限集含有有限個(gè)元素的集合。

        2)無(wú)限集含有無(wú)限個(gè)元素的集合。

        3)空集不含任何元素的集合例:{x|x2=—5}。

        二、集合間的基本關(guān)系

        1、“包含”關(guān)系子集

        注意:有兩種可能

        (1)A是B的一部分,;

        (2)A與B是同一集合。

        反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

        2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同”

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B。

        ①任何一個(gè)集合是它本身的子集。AA

        ②真子集:如果A?B且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

        ③如果ABBC那么AC

        ④如果AB同時(shí)BA那么A=B

        3、不含任何元素的集合叫做空集,記為Φ。

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        三、集合的運(yùn)算

        1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

        3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        記作:CSA即CSA={x?x?S且x?A}。

        (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

        (3)性質(zhì):

        ⑴CU(CUA)=A

        ⑵(CUA)∩A=Φ

        ⑶(CUA)∪A=U。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11

        (1)不等關(guān)系

        感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

        (2)一元二次不等式

        ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

        ②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

        ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。

        (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題

        ①?gòu)膶?shí)際情境中抽象出二元一次不等式組。

        ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。

        ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

        (4)基本不等式

        ①探索并了解基本不等式的證明過(guò)程。

        ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12

        空間兩條直線只有三種位置關(guān)系:平行、相交、異面

        按是否共面可分為兩類(lèi):

        (1)共面:平行、相交

        (2)異面:

        異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

        異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

        兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

        兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

        若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

        (1)有且僅有一個(gè)公共點(diǎn)——相交直線;

        (2)沒(méi)有公共點(diǎn)——平行或異面

        直線和平面的位置關(guān)系:

        直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

        ①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

        ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

        直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

        空間向量法(找平面的法向量)

        規(guī)定:

        a、直線與平面垂直時(shí),所成的角為直角,

        b、直線與平面平行或在平面內(nèi),所成的角為0°角

        由此得直線和平面所成角的取值范圍為[0°,90°]

        最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

        三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

        直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

        ③直線和平面平行——沒(méi)有公共點(diǎn)

        直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

        直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13

        一次函數(shù)的定義

        一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。

        函數(shù)的表示方法

        列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

        解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。

        圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。

        一次函數(shù)的性質(zhì)

        一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù)

        注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)

        a)k不為0

        b)x的指數(shù)是1

        c)b取任意實(shí)數(shù)

        一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)(0,b)和(—b/k,0)兩點(diǎn)的一條直線,我們稱(chēng)它為直線y=kx+b,它可以看做直線y=kx平移|b|個(gè)單位長(zhǎng)度得到。(當(dāng)b>0時(shí),向上平移;b<0時(shí),向下平移)

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14

        1.定義法:

        判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可.

        2.轉(zhuǎn)換法:

        當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷.

        3.集合法

        在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

        若A∩B,則p是q的充分條件.

        若A∪B,則p是q的必要條件.

        若A=B,則p是q的充要條件.

        若A∈B,且B∈A,則p是q的既不充分也不必要條件.

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 15

        軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

        一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

        1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

        2、寫(xiě)出點(diǎn)M的集合;

        3、列出方程=0;

        4、化簡(jiǎn)方程為最簡(jiǎn)形式;

        5、檢驗(yàn)。

        二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

        1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

        2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

        3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

        4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

        5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

        求動(dòng)點(diǎn)軌跡方程的一般步驟:

        ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

        ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

        ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

        ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

        ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 16

        一、直線與方程

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        (2)直線的斜率

        ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當(dāng)0,90時(shí),k0;當(dāng)90y2y1x2x1,180時(shí),k0;當(dāng)90時(shí),k不存在。

        ②過(guò)兩點(diǎn)的直線的斜率公式:k(x1x2)

        注意下面四點(diǎn):

        (1)當(dāng)x1x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無(wú)關(guān);

        (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

        (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

        (3)直線方程

        ①點(diǎn)斜式:yy1k(xx1)直線斜率k,且過(guò)點(diǎn)x1,y1注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

        當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

        ②斜截式:ykxb,直線斜率為k,直線在y軸上的截距為b

        ③兩點(diǎn)式:

        yy1y2y1xyxx1x2x1(x1x2,y1y2)直線兩點(diǎn)x1,y1,x2,y2

        ④截矩式:

        ab其中直線l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。

        ⑤一般式:

        AxByC0(A,B不全為0)

        注意:○1各式的適用范圍○2特殊的方程如:

        平行于x軸的直線:yb(b為常數(shù));平行于y軸的直線:

        (5)直線系方程:即具有某一共同性質(zhì)的直線

        (一)平行直線系

        (二)過(guò)定點(diǎn)的直線系

        ()斜率為k的直線系:yy0kxx0,直線過(guò)定點(diǎn)x0,y0;()過(guò)兩條直線l1:A1xB1yC10,l2xa(a為常數(shù));

        平行于已知直線A0xB0yC00(A0,B0是不全為0的常數(shù))的直線系:A0xB0yC0(C為常數(shù))

        :A2xB2yC20的交點(diǎn)的直線系方程為

        A1xB1yC1A2xB2yC20

        (6)兩直線平行與垂直

        當(dāng)l1:yk1xb1,l2:yk2xb2時(shí),

        為參數(shù)),其中直線l2不在直線系中。

        l1//l2k1k2,b1b2;l1l2k1k21

        注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

        (7)兩條直線的交點(diǎn)

        l1:A1xB1yC10l2:A2xB2yC20相交

        AxB1yC10交點(diǎn)坐標(biāo)即方程組1的一組解。

        AxByC0222方程組無(wú)解l1//l2;方程組有無(wú)數(shù)解l1與l2重合

        (8)兩點(diǎn)間距離公式:設(shè)A(x1,y1),B是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),(x2,y2)則|AB|(x2x1)(y2y1)

        (9)點(diǎn)到直線距離公式:一點(diǎn)Px0,y0到直線l1:AxByC0的距離dAx0By0CAB22

        (10)兩平行直線距離公式

        在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

        二、圓的方程

        1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

        2、圓的方程

        (1)標(biāo)準(zhǔn)方程xayb22r,圓心a,b,半徑為r;

        (2)一般方程x當(dāng)D22yDxEyF0

        D222E24F0時(shí),方程表示圓,此時(shí)圓心為2,1E,半徑為r22D2E24F

        當(dāng)DE4F0時(shí),表示一個(gè)點(diǎn);當(dāng)DE4F0時(shí),方程不表示任何圖形。

        (3)求圓方程的方法:

        一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

        另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

        3、直線與圓的位置關(guān)系:

        直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

        22(1)設(shè)直線l:AxByC0,圓C:xaybr2,圓心Ca,b到l的距離為dAaBbC,則有2222ABdrl與C相離;drl與C相切;drl與C相交

        (2)設(shè)直線l:AxByC0,圓C:xaybr,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令222其中的判別式為,則有0l與C相離;0l與C相切;0l與C相交

        注:如果圓心的位置在原點(diǎn),可使用公式xx0yy0r去解直線與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標(biāo),r表示2半徑。

        (3)過(guò)圓上一點(diǎn)的切線方程:

        ①圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為xx0yy0r(課本命題).

        ②圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).

        4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設(shè)圓C1:xa1yb1r2,C2:xa22222yb222R

        兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)dRr時(shí)兩圓外離,此時(shí)有公切線四條;

        當(dāng)dRr時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)RrdRr時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)dRr時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)dRr時(shí),兩圓內(nèi)含;當(dāng)d三、立體幾何初步0時(shí),為同心圓。

        "(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線)

        S直棱柱側(cè)面積S正棱臺(tái)側(cè)面積12chS圓柱側(cè)2rhS正棱錐側(cè)面積12ch"S圓錐側(cè)面積rl

        (c1c2)h"S圓臺(tái)側(cè)面積(rR)l

        S圓柱表2rrlS圓錐表rrlS圓臺(tái)表r2rlRlR2

        (3)柱體、錐體、臺(tái)體的體積公式

        V柱ShV圓柱Sh211rhV錐ShV圓錐r2h

        V臺(tái)13(S"SSS)hV圓臺(tái)"133(S"SSS)h2

        "13(rrRR)h

        22(4)球體的表面積和體積公式:V球=4R3;S球面=4R

        4、空間點(diǎn)、直線、平面的位置關(guān)系

        (1)平面

        ①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;

        ②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫(xiě)在一個(gè)銳角內(nèi));

        也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。

        ③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作A;點(diǎn)A不在平面內(nèi),記作A

        點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作Al;直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。

        (2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)應(yīng)用:檢驗(yàn)桌面是否平;判斷直線是否在平面內(nèi)用符號(hào)語(yǔ)言表示公理1:Al,Bl,A,Bl

        (3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

        推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:

        ①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

        (4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線符號(hào):平面α和β相交,交線是a,記作α∩β=a。符號(hào)語(yǔ)言:PABABl,Pl

        公理3的作用:

        ①它是判定兩個(gè)平面相交的方法。

        ②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

        ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

        (5)公理4:平行于同一條直線的兩條直線互相平行

        (6)空間直線與直線之間的位置關(guān)系

        ①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

        ②異面直線性質(zhì):既不平行,又不相交。

        ③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

        ④異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。說(shuō)明:

        (1)判定空間直線是異面直線方法:

        ①根據(jù)異面直線的定義;

        ②異面直線的判定定理

        (2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。

        ②求異面直線所成角步驟:

        A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

        B、證明作

        出的角即為所求角C、利用三角形來(lái)求角

        (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

        (8)空間直線與平面之間的位置關(guān)系

        直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn).

        三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α

        (9)平面與平面之間的位置關(guān)系:平行沒(méi)有公共點(diǎn);α∥β

        相交有一條公共直線。α∩β=b

        5、空間中的平行問(wèn)題

        (1)直線與平面平行的判定及其性質(zhì)

        線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行

        線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行線線平行

        (2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理

        (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行)

        (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行)

        (3)垂直于同一條直線的兩個(gè)平面平行,

        兩個(gè)平面平行的性質(zhì)定理

        (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

        (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

        7、空間中的垂直問(wèn)題

        (1)線線、面面、線面垂直的定義

        ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

        ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

        ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

        (2)垂直關(guān)系的判定和性質(zhì)定理

        ①線面垂直判定定理和性質(zhì)定理

        判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

        ②面面垂直的判定定理和性質(zhì)定理

        判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

        性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

        9、空間角問(wèn)題

        (1)直線與直線所成的角

        ①兩平行直線所成的角:規(guī)定為0。

        ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

        ③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a,條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角

        ①平面的平行線與平面所成的角:規(guī)定為0。

        ②平面的垂線與平面所成的角:規(guī)定為90。

        ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。求斜線與平面所成角的思路類(lèi)似于求異面直線所成角:“一作,二證,三計(jì)算”。在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

        在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:

        (1)斜線上一點(diǎn)到面的垂線;

        (2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

        (3)二面角和二面角的平面角

        ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

        ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角.....的平面角。

        ③直二面角:平面角是直角的二面角叫直二面角。

        兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

        ④求二面角的方法

        定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

        垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角7、空間直角坐標(biāo)系

        (1)定義:如圖,OBCDDABC是單位正方體.以A為原點(diǎn),

        分別以O(shè)D,OA,OB的方向?yàn)檎较颍⑷龡l數(shù)軸x軸.y軸.z軸。

        這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.

        1)O叫做坐標(biāo)原點(diǎn)

        2)x軸,y軸,z軸叫做坐標(biāo)軸.

        3)過(guò)每?jī)蓚(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。

        (2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

        (3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,有序?qū)崝?shù)組(x,y,z)叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))

        (4)空間兩點(diǎn)距離坐標(biāo)公式:d222(x2x1)(y2y1)(z2z1)

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 17

        空間兩條直線只有三種位置關(guān)系:平行、相交、異面。

        按是否共面可分為兩類(lèi):

        (1)共面:平行、相交

        (2)異面:

        異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

        異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

        兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。

        兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

        若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

        (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面。

        直線和平面的位置關(guān)系:

        直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

        ①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

        ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

        直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

        空間向量法(找平面的法向量)

        規(guī)定:a、直線與平面垂直時(shí),所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。

        由此得直線和平面所成角的取值范圍為[0°,90°]。

        最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

        三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

        直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。直線和平面平行——沒(méi)有公共點(diǎn)

        直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

        直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

        高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 18

        一、求導(dǎo)數(shù)的方法

        (1)基本求導(dǎo)公式

        (2)導(dǎo)數(shù)的四則運(yùn)算

        (3)復(fù)合函數(shù)的導(dǎo)數(shù)

        設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即

        二、關(guān)于極限

        1、數(shù)列的極限:

        粗略地說(shuō),就是當(dāng)數(shù)列的項(xiàng)n無(wú)限增大時(shí),數(shù)列的項(xiàng)無(wú)限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

        2、函數(shù)的極限:

        當(dāng)自變量x無(wú)限趨近于常數(shù)時(shí),如果函數(shù)無(wú)限趨近于一個(gè)常數(shù),就說(shuō)當(dāng)x趨近于時(shí),函數(shù)的極限是,記作

        三、導(dǎo)數(shù)的概念

        1、在處的導(dǎo)數(shù)。

        2、在的導(dǎo)數(shù)。

        3。函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:

        函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

        即k=,相應(yīng)的切線方程是

        注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。

        例、若=2,則=()A—1B—2C1D

        四、導(dǎo)數(shù)的綜合運(yùn)用

        (一)曲線的切線

        函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

        (1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

        (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

      【高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)】相關(guān)文章:

      高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)12-19

      高中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)05-25

      高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)02-20

      高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)02-11

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15

      高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)09-28

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-22

      高中數(shù)學(xué)函數(shù)部分知識(shí)點(diǎn)總結(jié)06-30

      高中數(shù)學(xué)的基本知識(shí)點(diǎn)總結(jié)07-19

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲日本成本人动漫 | 亚洲欧美日韩国产综合第一产区 | 亚洲自产一区二区 | 日韩中文字幕有码在线 | 亚州国产欧美一区二区三区 | 中文字幕日本免费视片 |