<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      初中2次函數知識點總結

      時間:2021-04-11 18:56:05 總結 我要投稿

      初中2次函數知識點總結

        導語:對初中2次函數知識點,同學們有必要進行總結。以下是初中2次函數知識點總結,供大家閱讀。

      初中2次函數知識點總結

        I、定義與定義表達式

        一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

        (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。

        二次函數表達式的右邊通常為二次三項式。

        II、二次函數的三種表達式

        一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

        頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

        注:在3種形式的互相轉化中,有如下關系:

        h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

        III、二次函數的圖像

        在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

        IV、拋物線的性質

        1、拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

        對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2、拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

        3、二次項系數a決定拋物線的開口方向和大小。

        當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

        4、一次項系數b和二次項系數a共同決定對稱軸的位置。

        當a與b同號時(即ab>0),對稱軸在y軸左;

        當a與b異號時(即ab<0),對稱軸在y軸右。

        5、常數項c決定拋物線與y軸交點。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點個數

        Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

        Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

        Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

        V、二次函數與一元二次方程

        特別地,二次函數(以下稱函數)y=ax^2+bx+c,

        當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

        此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

        1、二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

        當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

        當h<0時,則向左平行移動|h|個單位得到。

        當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

        當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的`圖象;

        當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

        當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。

        2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a)。

        3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減。划攛≥-b/2a時,y隨x的增大而增大。若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

        4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

        (1)圖象與y軸一定相交,交點坐標為(0,c);

        (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根。這兩點間的距離AB=|x-x|

        當△=0。圖象與x軸只有一個交點;

        當△<0。圖象與x軸沒有交點。當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。

        5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a。

        頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

        6、用待定系數法求二次函數的解析式

        (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

        y=ax^2+bx+c(a≠0)。

        (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0)。

        (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

        7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現。

      【初中2次函數知識點總結】相關文章:

      數學初中知識點總結04-25

      初中數學重要知識點總結04-25

      初中數學分式知識點總結04-22

      初中中考數學知識點總結04-22

      中考初中數學知識點總結04-22

      初中英語知識點總結04-24

      人教版初中數學圓知識點總結04-24

      初中數學重點知識點總結04-24

      初中數學必學的知識點總結04-24

      關于初中數學知識點總結04-24

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        日本亚洲精品色婷婷在线影院 | 久久亚洲视频区 | 亚洲精品字幕在线观看 | 亚洲国产一区二区三区最新 | 色偷偷香蕉人人澡 | 亚洲国产欧美日韩另类精品一区二区在线 |