<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      小學等差數(shù)列課件

      時間:2021-06-10 12:47:53 課件 我要投稿

      小學等差數(shù)列課件

        如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。下面是小編為大家推薦等差數(shù)列課件的內容,希望能夠幫助到你,歡迎大家的閱讀參考。

      小學等差數(shù)列課件

        一、教材分析

        1、教學目標:

        A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;

        B.培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

        C 通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。

        2、教學重點和難點

        ①等差數(shù)列的概念。

        ②等差數(shù)列的通項公式的推導過程及應用。用不完全歸納法推導等差數(shù)列的通項公式。

        二、教法分析

        采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

        三、教學程序

        本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。

        (一)復習引入:

        1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是

        21,22,23,24,25,

        2.某劇場前10排的座位數(shù)分別是:

        38,40,42,44,46,48,50,52,54,56。

        3.某長跑運動員7天里每天的訓練量(單位:)是:

        7500,8000,8500,9000,9500,10000,10500。

        共同特點:從第2項起,每一項與前一項的差都等于同一個常數(shù)。

        (二) 新課探究

        1、給出等差數(shù)列的概念:

        如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:

        ① “從第二項起”滿足條件;

        ②公差d一定是由后項減前項所得;

        ③公差可以是正數(shù)、負數(shù),也可以是0。

        2、推導等差數(shù)列的通項公式

        若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:

        - =d 即: = +d

        – =d 即: = +d = +2d

        – =d 即: = +d = +3d

        ……

        進而歸納出等差數(shù)列的通項公式:

        = +(n-1)d

        此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

        – =d

        – =d

        – =d

        ……

        – =d

        將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

        當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。

        接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運用

        (三)應用舉例

        這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

        例1 (1)求等差數(shù)列8,5,2,…的第20項;

        (2)-401是不是等差數(shù)列-5,-9,-13,…的.項?如果是,是第幾項?

        第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式

        例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。

        在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

        例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

        (四)反饋練習

        1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

        2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

        此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

        (五)歸納小結 (由學生總結這節(jié)課的收獲)

        1.等差數(shù)列的概念及數(shù)學表達式.

        強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

        2.等差數(shù)列的通項公式 = +(n-1) d會知三求一

        (六) 布置作業(yè)

        必做題:課本P114 習題3.2第2,6 題

        選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

        四、板書設計

        在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

      【小學等差數(shù)列課件】相關文章:

      等差數(shù)列課件資料06-10

      等差數(shù)列說課稿課件03-23

      等差數(shù)列說課課件03-23

      等差數(shù)列及通項公式說課課件(精選6篇)09-26

      小學等差數(shù)列求和公式08-24

      《等差數(shù)列》說課稿06-24

      等差數(shù)列說課稿03-23

      等差數(shù)列公式10-02

      等差數(shù)列說課稿08-01

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        日本免费二区三区久久 | 日本亚洲另类专区 | 亚洲欧美国产另类视频 | 五月天综合中文网 | 日本免费一区二区三区久久 | 久久大香香蕉国产拍国 |